Volume 42 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
LI Yan, GONG Liang, XU Dejie, PAN Xing, HU Chenhao. A Timetable Optimization Method for Urban Train Transit Based on Virtual Coupling[J]. Journal of Transport Information and Safety, 2024, 42(3): 74-84. doi: 10.3963/j.jssn.1674-4861.2024.03.008
Citation: LI Yan, GONG Liang, XU Dejie, PAN Xing, HU Chenhao. A Timetable Optimization Method for Urban Train Transit Based on Virtual Coupling[J]. Journal of Transport Information and Safety, 2024, 42(3): 74-84. doi: 10.3963/j.jssn.1674-4861.2024.03.008

A Timetable Optimization Method for Urban Train Transit Based on Virtual Coupling

doi: 10.3963/j.jssn.1674-4861.2024.03.008
  • Received Date: 2023-08-18
    Available Online: 2024-10-21
  • To solve the mismatch between train capacity and demand during peak hours, a timetable optimization method for urban train transit based on virtual coupling technical is proposed, incorporating spatiotemporal characteristics of passenger flow, oversaturation of trains during peak hours, and the limitation of the number of rolling stocks. A dynamic passenger flow cumulative demand (PFCD) function is proposed to pedict the passenger flow at different hours. Then, the schedule optimization model for urban rail transit based on the virtual coupling is established, in which, the departure time of trains at the first station and the marshaling scheme of each train are decision variables and the average waiting time (AWT) of passengers and the train travel mileage (TTM) are minimized under constraints such as passenger demand in different hours, departure interval, running time, number of rolling stocks, rolling stock circulation, etc. Lagrangian relaxation is introduced to reduce the complexity of the problem by absorbing the coupling constraints into the objective, and the original problem is decomposed into two independent subproblems. By using a commercial solver and the designed heuristic algorithm, the lower bound and upper bound of the problems are found. A metro line in Shanghai Metro is employed for demonstration, and the results show that: ① the proposed dynamic PFCD function fits the arrival pattern of passengers well during the peak hours; ② compared with the uniform departure schedule, the non-uniform departure (non-UD) schedule under the fixed train composition (FTC) mode can reduce the AWT of passengers by 24.15% and the waiting time of stranded passengers by 51.73%; ③ compared with the non-UD schedule under the FTC mode, the train timetable based on virtual coupling can reduce not only the train running kilometers by 0.33% but also the AWT of passengers and the waiting time of stranded passengers by 16.95% and 6.03%, respectively.

     

  • loading
  • [1]
    张海, 吕苗苗, 倪少权. 基于非均匀发车间隔的大小交路时刻表优化模型[J]. 交通运输系统工程与信息, 2022, 22 (6): 224-233.

    ZHANG H, LYU M M, NI S Q. Train timetable optimization model for full-length and short-turn routings with irregular departure intervals[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(6): 224-233. (in Chinese)
    [2]
    ZHAO S, WU R F, SHI F. A line planning approach for high-speed railway network with time-varying demand[J]. Computers & Industrial Engineering, 2021, 160: 107547.
    [3]
    孙国锋, 景云, 马亚雯. 考虑旅客多维出行需求的动态列车开行方案优化[J]. 铁道学报, 2022, 44(11): 10-18. doi: 10.3969/j.issn.1001-8360.2022.11.002

    SUN G F, JING Y, MA Y W. Optimization of dynamic train line planning considering multi-dimensional travel demand of passengers[J]. Journal of the China Railway Society, 2022, 44(11): 10-18. (in Chinese) doi: 10.3969/j.issn.1001-8360.2022.11.002
    [4]
    NIU H M, ZHOU X S. Optimizing urban rail timetable under time-dependent demand and oversaturated conditions[J]. Transportation Research Part C: Emerging technologies, 2013, 36(11): 212-230.
    [5]
    BARRENA E, CANCA D, COELHO L C, et al. Single-line rail rapid transit timetabling under dynamic passenger demand[J]. Transportation Research Part B: Methodological, 2014, 70: 134-150. doi: 10.1016/j.trb.2014.08.013
    [6]
    SHANG P, LI R M, YANG LY. Optimization of urban single-line metro timetable for total passenger travel time under dynamic passenger demand[J]. ProcediaEngineering, 2016, 137: 151-160.
    [7]
    许得杰, 巩亮, 曾俊伟. 考虑客流时变需求的大小交路列车时刻表优化模型[J]. 交通运输系统工程与信息, 2019, 19 (2): 122-129.

    XU D J, GONG L, ZENG J W. Modeling of train timetable with full-length and short-turn routing considering the time-varying demand[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(2): 122-129. (in Chinese)
    [8]
    周文梁, 黄裕, 邓连波. 考虑运行节能和车底运用的城轨时刻表优化[J]. 铁道科学与工程学报, 2023, 20(2): 473-482.

    ZHOU W L, HUANG Y, DENG L B. Optimization of train schedule for urban rail considering operation energy-saving and train circulation planning[J]. Journal of Railway Science and Engineering, 2023, 20(2): 473-482. (in Chinese)
    [9]
    陈然, 吴首蓉, 路超. 疫情下城市轨道交通车底运用计划编制[J]. 中国安全科学学报, 2022, 32(增刊1): 51-56.

    CHEN R, WU S R, LU C. Study on generating train stock utilization plans during epidemic period[J]. China Safety Science Journal, 2022, 32(S1): 51-56. (in Chinese)
    [10]
    金波, 郭佑星, 王青元, 等. 考虑大小交路的时刻表与车底运用计划一体化编制方法[J]. 中国铁道科学, 2022, 43(3): 173-181. doi: 10.3969/j.issn.1001-4632.2022.03.19

    JIN B, GUO Y X, WANG Q Y, et al. Integrated scheduling method of timetable and rolling stock assignment scheme considering long and short routing[J]. China Railway Science, 2022, 43(3): 173-181. (in Chinese) doi: 10.3969/j.issn.1001-4632.2022.03.19
    [11]
    赵冰倩. 考虑列车运用均衡性的城市轨道交通车底运用计划优化方法研究[D]. 北京: 北京交通大学, 2021.

    ZHAO B Q. Optimization methods on the connection plan of rolling stocks for urban rail transit considering utilization equilibrium[D]. Beijing: Beijing Jiaotong University, 2021. (in Chinese)
    [12]
    周厚盛, 戚建国, 杨立兴, 等. 基于灵活编组的城轨车底运用计划及鲁棒客流控制策略[J]. 控制与决策, 2023, 38(9): 2663-2671.

    ZHOU H S, QI J G, YANG L X, et al. Joint optimization for rolling stock circulation plan based on flexible train composition mode and robust passenger flow control strategy on urban rail transit lines[J]. Control and Decision, 2023, 38(9): 2663-2671. (in Chinese)
    [13]
    杨中平, 游婷, 束天成, 等. 列车虚拟编组技术的研究现状及发展[J]. 都市快轨交通, 2023, 36(1): 14-21. doi: 10.3969/j.issn.1672-6073.2023.01.003

    YANG Z P, YOU T, SHU T C, et al. Research status and development of virtual coupling technology[J]. Urban Rapid Rail Transit, 2023, 36(1): 14-21. (in Chinese) doi: 10.3969/j.issn.1672-6073.2023.01.003
    [14]
    MICHAEL N, FRANCESCO C. Dynamic train unit coupling and decoupling at cruising speed: systematic classification, operational potentials, and research agenda[J]. Journal of Rail Transport Planning & Management, 2021, 18(8): 100241.
    [15]
    杨安安, 孙继营, 汪波, 等. 基于虚拟编组技术的大小交路列车开行方案优化[J]. 北京交通大学学报, 2022, 46(4): 9-14.

    YANG A A, SUN J Y, WANG B, et al. Optimization of virtual-coupling-orientated train operation plan based on full-length and short-turn routing[J]. Journal of Beijing Jiaotong University, 2022, 46(4): 9-14. (in Chinese)
    [16]
    韩宝明, 龙宇轩, 张琦, 等. 基于虚拟编组的市域列车运行组织优化研究[J]. 都市快轨交通, 2023, 36(1): 43-50. doi: 10.3969/j.issn.1672-6073.2023.01.007

    HAN B M, LONG Y X, ZHANG Q, et al. Optimization of suburban train operation organization based on virtual coupling[J]. Urban Rapid Rail Transit, 2023, 36(1): 43-50. (in Chinese) doi: 10.3969/j.issn.1672-6073.2023.01.007
    [17]
    许可. 虚拟编组条件下城市轨道交通Y型线路列车交路方案优化研究[D]. 北京: 北京交通大学, 2022.

    XU K. Train traffic optimization scheme of urban rail transit Y-type line under virtual coupling condition[D]. Beijing: Beijing Jiaotong University, 2022. (in Chinese)
    [18]
    赖子良, 王江锋, 李晔, 等. 车车通信环境下考虑交通拥堵状态的碰撞时间混合分布建模研究[J]. 交通信息与安全, 2022, 40(2): 53-62. doi: 10.3963/j.jssn.1674-4861.2022.02.007

    LAI Z L, WANG J F, LI Y, et al. A time-to-collision hybrid distribution model considering congestion under a vehicle-to-vehicle communication environment[J]. Journal of Transport Information and Safety, 2022, 40(2): 53-62. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.02.007
    [19]
    许得杰. 城市轨道交通大小交路列车开行方案优化研究[D]. 北京: 北京交通大学, 2016.

    XU D J. Optimization for train plan of full-length and short-turn routing in urban rail transit[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese)
    [20]
    刘泓茗, 刘皓玮, 郑泽熙. 基于时空协同优化的多目标城市轨道交通延误恢复研究[J]. 铁道运输与经济, 2023, 45(1): 109-114.

    LIU H M, LIU H W, ZHENG Z X. Research on multi-objective urban rail transit delay recovery based on spatio-temporal collaborative optimization[J]. Railway Transport and Economy, 2023, 45(1): 109-114. (in Chinese)
    [21]
    革新, 张玉召. 考虑驾驶策略的高速列车运行图节能优化方法[J]. 交通信息与安全, 2022, 40(6): 118-126, 136. doi: 10.3963/j.jssn.1674-4861.2022.06.012

    GE X, ZHANG Y Z. An energy-saving method based on optimized timetable for high-speed trains considering driving strategy[J]. Journal of Transport Information and Safety, 2022, 40(6): 118-126, 136. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.06.012
    [22]
    刘人铭. 基于客流需求驱动的城市轨道交通列车时刻表与车底衔接计划协同优化方法研究[D]. 北京: 北京交通大学, 2019.

    LIU R M. Collaborative optimization for demand-driven train timetable and train connection plan in urban rail system[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(6)

    Article Metrics

    Article views (180) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return