Citation: | CHEN Xiqun, SHEN Loutao, LI Junyi, LI Chuanjia. A Short-term Prediction for OD Passenger Flow in Urban Rail Transit Based on Heterogeneous Data Feature Extraction[J]. Journal of Transport Information and Safety, 2024, 42(2): 158-165. doi: 10.3963/j.jssn.1674-4861.2024.02.016 |
[1] |
张艺铭, 陈明明, 石磊, 等. 基于IGWO-BP算法的轨道交通短时客流预测[J]. 交通信息与安全, 2021, 39(3): 85-92. doi: 10.3963/j.jssn.1674-4861.2021.03.011
ZHANG Y M, CHEN M M, SHI L, et al. A forecast of short-term passenger flow of rail transit based on IGWO-BP algorithm[J]. Journal of Transport Information and Safety, 2021, 39(3): 85-92. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.03.011
|
[2] |
蔡昌俊, 姚恩建, 王梅英, 等. 基于乘积ARIMA模型的城市轨道交通进出站客流量预测[J]. 北京交通大学学报, 2014, 38(2): 135-140.
CAI C J, YAO E J, WANG M Y, et al. Prediction of urban railway station's entrance and exit passenger flow based on multiply ARIMA model[J]. Journal of Beijing Jiaotong University, 2014, 38(2): 135-140. (in Chinese)
|
[3] |
谢臻, 郭建媛, 秦勇. 基于支持向量回归的地铁进站客流短时预测模型[J]. 都市快轨交通, 2020, 33(2): 82-86. doi: 10.3969/j.issn.1672-6073.2020.02.014
XIE Z, GUO J Y, QIN Y. Short-term prediction model of subway entry passenger flow based on support vector regression[J]. Urban Rapid RailTransit, 2020, 33(2): 82-86. (in Chinese) doi: 10.3969/j.issn.1672-6073.2020.02.014
|
[4] |
帅春燕, 谢亚威, 单君, 等. 基于SSA-SVR模型的城市轨道交通短时进站客流预测[J]. 都市快轨交通, 2022, 35(5): 76-83.
SHUAI C Y, XIE Y W, SHAN J, et al. Prediction of short-term inbound passenger flow of urban rail transit based on the singular spectrum analysis and support vector regression model[J]. Urban Rapid Rail Transit, 2022, 35(5): 76-83. (in Chinese)
|
[5] |
YANG X, XUE Q, DING M, et al. Short-term prediction of passenger volume for urban rail systems: A deep learning approach based on smart-card data[J]. International Journal of Production Economics, 2021, 231: 107920. doi: 10.1016/j.ijpe.2020.107920
|
[6] |
崔洪涛, 陈晓旭, 杨超, 等. 基于深度长短期记忆网络的地铁进站客流预测[J]. 城市轨道交通研究, 2019, 22(9): 41-45.
CUI H T, CHEN X X, YANG C, et al. Forecast of subway inbound passenger flow based on DLSTM recurrent network[J]. Urban Mass Transit, 2019, 22(9): 41-45. (in Chinese)
|
[7] |
施俊庆, 李睿, 程明慧, 等. 基于动态时空神经网络模型的地铁客流预测[J]. 交通运输系统工程与信息, 2023, 23(2): 139-147.
SHI J Q, LI R, CHENG M H, et al. Metro passenger flow prediction based on dynamic spatio-temporal neural network model[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(2): 139-147. (in Chinese)
|
[8] |
HAO S, LEE D H, ZHAO D. Sequence to sequence learning with attention mechanism for short-term passenger flow prediction in large-scale metro system[J]. Transportation Research Part C: Emerging Technologies, 2019, 107: 287-300. doi: 10.1016/j.trc.2019.08.005
|
[9] |
LIU Y, LIU Z, JIA R. DeepPF: a deep learning based architecture for metro passenger flow prediction[J]. Transportation Research Part C: Emerging Technologies, 2019, 101: 18-34. doi: 10.1016/j.trc.2019.01.027
|
[10] |
DJUKIC T, VAN LINT J W C, HOOGENDOORN S P. Application of principal component analysis to predict dynamic origin-destination matrices[J]. Transportation Research Record, 2012, 2283(1): 81-89. doi: 10.3141/2283-09
|
[11] |
BASAGOITI R, BEAMURGIA M, PETERS R, et al. Origin destination matrix estimation and prediction in vertical transportation[C]. 2nd Symposium on Lift and Escalator Technologies, Northampton, UK: LESET, 2012.
|
[12] |
LEE C Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791
|
[13] |
徐新颖. 基于卷积神经网络的城市轨道交通短时客流预测方法研究[D]. 福州: 福州大学, 2023.
XU X Y. Research on short-term passenger flow forecasting method of urban rail transit based on convolutional neural network[D]. Fuzhou: Fuzhou University, 2023.
|
[14] |
王博文, 王景升, 王统一, 等. 基于卷积神经网络与门控循环单元的交通流预测模型[J]. 重庆大学学报, 2023, 46(8): 132-140.
WANG B W, WANG J S, WANG T Y, et al. Multivariable traffic flow prediction model based on convolutional neural network and gate recurrent unit[J]. Journal of Chongqing University, 2023, 46(8): 132-140. (in Chinese)
|
[15] |
SHEN L, SHAO Z, YU Y, et al. Hybrid approach combining modified gravity model and deep learning for short-term forecasting of metro transit passenger flows[J]. Transportation Research Record, 2021, 2675(1): 25-38.
|
[16] |
ZHANG J, CHE H, CHEN F, et al. Short-term origin-destination demand prediction in urban rail transit systems: a channel-wise attentive split-convolutional neural network method[J]. Transportation Research Part C: Emerging Technologies, 2021, 124: 102928.
|
[17] |
CHU K F, LAM A Y S, LI V O K. Deep multi-scale convolutional LSTM network for travel demand and origin-destination predictions[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(8): 3219-3232.
|
[18] |
NOURSALEHI P, KOUTSOPOULOS H N, ZHAO J. Dynamic origin-destination prediction in urban rail systems: a multi-resolution spatio-temporal deep learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(6): 5106-5115.
|
[19] |
李若怡. 基于改进时空LSTM模型的城市轨道交通系统OD客流短时预测[D]. 北京: 北京交通大学, 2020.
LI R Y. Short-term prediction of origin-destination passenger flow for urban rail transit based on improved spatio-temporal LSTM model[D]. Beijing: Beijing Jiaotong University, 2020.
|
[20] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An Image is worth 16×16 words: transformers for image recognition at scale[EB/OL]. (2021-6-3)[2023-6-19].
|
[21] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30: 5998-6008.
|
[22] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
|