Volume 42 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
KE Yunhao, HUANG Yuchun, WU Zijian. A Geometric Information Extraction Method of Road Signs in LiDAR Point Cloud Based on RPCA[J]. Journal of Transport Information and Safety, 2024, 42(2): 76-86. doi: 10.3963/j.jssn.1674-4861.2024.02.008
Citation: KE Yunhao, HUANG Yuchun, WU Zijian. A Geometric Information Extraction Method of Road Signs in LiDAR Point Cloud Based on RPCA[J]. Journal of Transport Information and Safety, 2024, 42(2): 76-86. doi: 10.3963/j.jssn.1674-4861.2024.02.008

A Geometric Information Extraction Method of Road Signs in LiDAR Point Cloud Based on RPCA

doi: 10.3963/j.jssn.1674-4861.2024.02.008
  • Received Date: 2023-10-24
    Available Online: 2024-09-14
  • The extraction of geometric parameters of road signs, such as position and sizes, is a crucial aspect of transportation asset management and autonomous driving applications. In vehicular LiDAR point clouds, road signs occupy a small proportion, and are subject to significant interference from surrounding trees, resulting in blurred edges and noise. To accurately extracting the geometric information of road signs, a two-stage pole-like object point cloud segmentation method is proposed. Subsequently, robust principal component analysis (RPCA) is employed to eliminate noise and extraneous points around the signs. The components of independent central poles and sign planes are obtained through the shape analysis of point cloud clusters. Finally, introduce the annular region growth to fit the central poles, and employ normal vector projective sampling and oriented bounding box (OBB) to approxi-mate the signs. Thus, accurate geometric information is obtained for both the central pole and the sign. Experiments are conducted using laser point cloud from 34 different intersections in the Hongshan, Gaoxin, and Wuchang dis-tricts of Wuhan, China. Training and validation using the KPConv segmentation network achieves an accuracy of 90.31%, a precision of 91.07%, and 92.74% recall rate. Additionally, the extraction of geometric information is con-ducted on 98 road signs from 20 intersections within the data above. This method achieves an effective extraction rate of 89.80%, a positional accuracy of 0.062 1 m, and 8.07% geometric error. The experiments demonstrate that this method effectively eliminates noise and extraneous point interference, and performs well on those signs with missing point clouds within 20%.

     

  • loading
  • [1]
    MATTHEW V, MEDHAT M. Deep learning for intelligent transportation systems: a survey of emerging trends[J]. IEEE Transactions on Intelligent Transportation Systems. 2020, 21(8): 3152-3168. doi: 10.1109/TITS.2019.2929020
    [2]
    林述涛. 面向多源数据融合的交通基础设施数字化架构研究[J]. 公路交通科技, 2018, 35(9): 122-127, 145. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201809018.htm

    LIN S T. Study on digital architecture of transportation infrastructure for multi-source data fusion[J]. Journal of Highway and Transportation Research and Development. 2018, 35(9): 122-127, 145. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201809018.htm
    [3]
    HUANG P D, CHENG M, CHEN Y P, et al. Traffic sign occlusion detection using mobile laser scanning point clouds[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(9): 2364-2376. doi: 10.1109/TITS.2016.2639582
    [4]
    GARGOUM S, El-BASYOUNY K, SABBAGH J, et al. Automated highway sign extraction using lidar data[J]. Transportation Research Record, 2017, 2643(1): 1-8. doi: 10.3141/2643-01
    [5]
    黄明, 车平文, 韦朋成. 道路点云中交通标志牌的识别提取研究[J]. 测绘科学, 2023, 48(2): 115-123. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD202302015.htm

    HUANG M, CHE P W, WEI P C. Research on recognition and extraction of traffic signs in road point cloud[J]. Science of Surveying and Mapping, 2023, 48(2): 115-123. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD202302015.htm
    [6]
    GARGOUM S, El-BASYOUNY K. Automated extraction of road features using LiDAR data: a review of LiDAR applications in transportation[C]. 4th International Conference on Transportation Information and Safety(ICTIS). Banff, Canada: IEEE, 2017.
    [7]
    瓮升霞, 陈一平. 基于移动激光点云的交通标志牌特征提取[J]. 厦门大学学报(自然科学版), 2016, 55(4): 580-585. https://www.cnki.com.cn/Article/CJFDTOTAL-XDZK201604023.htm

    WENG S X, CHEN Y P. Road-traffic-sign detection from mobile LiDAR point clouds[J]. Journal of Xiamen University (Natural Science), 2016, 55(4): 580-585. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDZK201604023.htm
    [8]
    JAVANMARDI M, SONG Z, QI X. Automated traffic sign and light pole detection in mobile LiDAR scanning data[J]. IET Intelligent Transport Systems, 2019, 13(5): 803-815. doi: 10.1049/iet-its.2018.5360
    [9]
    YANG B S, DONG Z, ZHAO G, et al. Hierarchical extraction of urban objects from mobile laser scanning data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 99: 45-57. doi: 10.1016/j.isprsjprs.2014.10.005
    [10]
    PLACHETKA C, FRICKE J, KLINGNER M, et al. DNN-based recognition of pole-like objects in LiDAR point clouds[C]. 2021 IEEE International Intelligent Transportation Systems Conference(ITSC). Indianapolis, The United States of America: IEEE, 2021.
    [11]
    PARK J, KIM C, KIM S, et al. PCSCNet: Fast 3D semantic segmentation of LiDAR point cloud for autonomous car using point convolution and sparse convolution network[J]. Expert Systems with Applications, 2023, 212: 118815. doi: 10.1016/j.eswa.2022.118815
    [12]
    CELESTINO O, CARLOS C, ENOC S-A. Automatic detection and classification of pole-like objects for urban cartography using mobile laser scanning data[J]. Sensors, 2017, 17(7): 1465. doi: 10.3390/s17071465
    [13]
    HUANG P D, CHEN Y P, LI J, et al. Extraction of street trees from mobile laser scanning point clouds based on subdivided dimensional features[C]. 2015 IEEE International Geoscience and Remote Sensing Symposium(IGARSS). Milan, Italy: IEEE, 2015.
    [14]
    TRUONG-HONG L, LINDENBERGH R C, VERMEIJ M J. Efficient sparse street furniture extraction from mobile laser scanning point clouds[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2022, 48(4): 161-168.
    [15]
    WEN C L, LI J, LUO H, et al. Spatial-related traffic sign inspection for inventory purposes using mobile laser scanning data[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 17(1): 27-37.
    [16]
    朱云涛, 李飞, 胡钊政, 等. 基于3D点云语义地图表征的智能车定位[J]. 交通信息与安全, 2021, 39(6): 143-152. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202106017.htm

    ZHU Y T, LI F, HU Z Z, et al. A localization method for intelligent vehicles based on semantic map representation extracted from 3D cloud points[J]. Journal of Transport Information and Safety, 2021, 39(6): 143-152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202106017.htm
    [17]
    THOMAS H, QI C R, DESCHAUD J E, et al. KPConv: flexible and deformable convolution for point clouds[C]. the IEEE/CVF International Conference on Computer Vision. Seoul, Korea: IEEE, 2019.
    [18]
    CAND S E J, LI X, MA Y, et al. Robust principal component analysis[J]. Journal of the ACM (JACM), 2011, 58(3): 1-37.
    [19]
    WEI M Q, WEI Z Y, ZHOU H R, et al. Agconv: Adaptive graph convolution on 3d point clouds[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 9374 - 9392.
    [20]
    HUANG Y C, MA P, JI Z, et al. Part-based modeling of pole-like objects using divergence-incorporated 3-D clustering of mobile laser scanning point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(3): 2611-2626.
    [21]
    HE S W, LIU B l. Review of bounding box algorithm based on 3D point cloud[J]. International Journal of Advanced Network, Monitoring and Controls, 2021, 6(1): 18-23.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(7)

    Article Metrics

    Article views (183) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return