Volume 42 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
ZHU Zhenjun, XU Yiqing, SHI Feifan, MA Jianxiao, SUN Jingrui. An Analysis of Park and Ride Choice Behavior around Rail Stations Based on Cross-Nested Logit Model[J]. Journal of Transport Information and Safety, 2024, 42(1): 161-167. doi: 10.3963/j.jssn.1674-4861.2024.01.018
Citation: ZHU Zhenjun, XU Yiqing, SHI Feifan, MA Jianxiao, SUN Jingrui. An Analysis of Park and Ride Choice Behavior around Rail Stations Based on Cross-Nested Logit Model[J]. Journal of Transport Information and Safety, 2024, 42(1): 161-167. doi: 10.3963/j.jssn.1674-4861.2024.01.018

An Analysis of Park and Ride Choice Behavior around Rail Stations Based on Cross-Nested Logit Model

doi: 10.3963/j.jssn.1674-4861.2024.01.018
  • Received Date: 2023-04-10
    Available Online: 2024-05-31
  • This study aims to optimize the configuration and operation of park and ride (P&R) facilities around rail stations by investigating traveler choice behavior at rail stations in Nanjing. The data on P&R facility usage was collected, and a survey focusing on three primary aspects was conducted: personal characteristics, travel characteristics, and P&R intentions. Utilizing this data, nine key variables influencing P&R choice behavior were identified. The study incorporates factors such as transfer mode, time, and distance to examine the nuances of traveler choices. Cross-nested Logit (CNL) models with transfer convenience and times as the primary nests were developed to analyze these behaviors under varying conditions. The analysis reveals that income and travel purpose significantly impact P&R choice, with the magnitude of these effects varying between models prioritizing transfer convenience versus those emphasizing transfer times. When transfer convenience is the upper nest of the CNL model, parameters for income, travel purpose, and parking duration exhibit relatively significant absolute values, namely 0.467, 0.359, and 0.454 respectively. Conversely, when transfer frequency serves as the upper nest of the CNL model, income, travel purpose, and trip frequency demonstrate relatively substantial absolute values, namely 0.550, 0.579, and 0.642 respectively. The membership probabilities within the CNL models indicate that travelers are more likely to opt for P&R when transfer convenience moderately increases or transfer frequency moderately decreases, with the highest membership degrees being 0.399 and 0.464, respectively. This suggests a preference for balanced transfer conditions. Furthermore, the CNL models demonstrate an approximately 10% improvement in prediction accuracy over nested and multiple Logit models, underscoring their efficacy in capturing travelers'sensitivities to different transfer scenarios.

     

  • loading
  • [1]
    中共中央国务院. 交通强国建设纲要[EB/OL]. (2019-09-19)[2023-04-10]. http://www.gov.cn/zhengce/2019-09/19/content_5431432.htm.

    The State Council. Outline of building a strong country in transportation[EB/OL]. (2019-09-19)[2023-04-10]. http://www.gov.cn/zhengce/2019-09/19/content_5431432.htm. (in Chinese)
    [2]
    姚恩建, 邹萌, 杨扬, 等. 基于出行行为分析的停车换乘设施定价优化[J]. 系统工程理论与实践, 2018, 38(5): 1277-1283. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201805017.htm

    YAO E J, ZOU M, YANG Y, et al. Park and ride pricing optimization strategy on the basis of travel behavior analysis[J]. Systems Engineering-Theory & Practice, 2018, 38(5): 1277-1283. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201805017.htm
    [3]
    陈佩虹, 史明鑫. 北京市停车换乘行为影响因素分析[J]. 北京交通大学学报(社会科学版), 2019, 18(1): 38-47. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJD201901005.htm

    CHEN P H, SHI M X. Analysis on the impact factors of park-and-ride behaviors in Beijing[J]. Journal of Beijing Jiaotong University (Social Sciences Edition), 2019, 18 (1): 38-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJD201901005.htm
    [4]
    赵芳, 四兵锋, 汪勤政, 等. 考虑多目标的城市停车换乘选址优化模型及算法[J]. 中国公路学报, 2022, 35(10): 268-279. doi: 10.3969/j.issn.1001-7372.2022.10.023

    ZHAO F, SI B F, WANG Q Z, et al. Model and algorithm for urban park-and-ride locations considering multiple objectives[J]. China Journal of Highway and Transport, 2022, 35(10): 268-279. (in Chinese) doi: 10.3969/j.issn.1001-7372.2022.10.023
    [5]
    ZHAO X W, CHEN P, JIAO J F, et al. How does'park and ride'perform? An evaluation using longitudinal data[J]. Transport Policy, 2019, 2019(74): 15-23.
    [6]
    KIMPTON A, POJANI D, SIPE N, et al. Parking behavior: park'n'ride (PnR) to encourage multimodalism in Brisbane[J]. Land Use Policy, 2020, 91: 104304. doi: 10.1016/j.landusepol.2019.104304
    [7]
    WEBB A, KHANI A. Park-and-ride choice behavior in a multimodal network with overlapping routes[J]. Transportation Research Record: Journal of the Transportation Research Board, 2020(3): 150-160.
    [8]
    YALINIZ P, USTUN O, BILGIC S, et al. Evaluation of park-and-ride application with AHP and ANP methods for the city of Eskisehir, Turkey[J]. Journal of Urban Planning and Development, 2022, 148(1): 04021066. doi: 10.1061/(ASCE)UP.1943-5444.0000781
    [9]
    HENRY E, FURNO A, EL-FAOUZI N E, et al. Locating park-and-ride facilities for resilient on-demand urbanmobility[J]. Transportation Research Part E: Logistics and Transportation Review, 2022, 158: 102557. doi: 10.1016/j.tre.2021.102557
    [10]
    MESA J A, ORTEGA F A, POZO M A, et al. Assessing the effectiveness of park-and-ride facilities on multimodal networks in smart cities[J]. Journal of the Operational Research Society, 2022, 73(3): 576-86. doi: 10.1080/01605682.2020.1854628
    [11]
    WANG X C, HE Q. Optimal capacity sizing of park-and-ride lots with information-aware commuters[J]. Production and Operations Management, 2023, 32(11): 3614-3633. doi: 10.1111/poms.14053
    [12]
    孙亦凡, 干宏程. 多交通方式实时信息影响下的通勤者出行行为[J]. 上海理工大学学报, 2018, 40(6): 595-600. https://www.cnki.com.cn/Article/CJFDTOTAL-HDGY201806013.htm

    SUN Y F, GAN H C. Car commuters'travel behaviors with presence of multi-modal travel information[J]. Journal of University of Shanghai for Science and Technology, 2018, 40(6): 595-600. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HDGY201806013.htm
    [13]
    赵顺晶, 龙建成, 丁建勋, 等. 两种经营模式下通勤廊道停车换乘选址及停车费用优化[J]. 系统工程理论与实践, 2018, 38(3): 734-742. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201803020.htm

    ZHAO S J, LONG J C, DING J X, et al. Optimal location and parking fee of park and ride facilities in a commute corridor under two operating modes[J]. Systems Engineering-The-ory & Practice, 2018, 38(3): 734-742. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201803020.htm
    [14]
    孙振东, 张生瑞, 李运, 等. 停车换乘与路票交易组合措施下居民出行特性建模分析[J]. 长安大学学报(自然科学版), 2018, 38(3): 88-96, 106. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201803012.htm

    SUN Z D, ZHANG S R, LI Y, et al. Analysis of characteristics under combination of TCS and P&R[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38(3): 88-96, 106. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201803012.htm
    [15]
    关宏志, 刘瑞远, 曾敏耀. 考虑停车换乘停车位不足的停车换乘行为[J]. 北京工业大学学报, 2019, 45(6): 593-600. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201906009.htm

    GUAN H Z, LIU R Y, ZENG M Y. Park-and-ride transfer behaviors under the circumstances of insufficient park-and-ride parking space[J]. Journal of Beijing University of Technolo-gy, 2019, 45(6): 593-600. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201906009.htm
    [16]
    于晓飞, 刘兵, 陈汐, 等. 基于互联网出行数据的停车设施选址规划方法[J]. 交通信息与安全, 2023, 41(3): 119-127. doi: 10.3963/j.jssn.1674-4861.2023.03.013

    YU X F, LIU B, CHENG X, et al. A method for planning of parking-facility locations using internet mobility data[J]. Journal of Transport Information and Safety, 2023, 41(3): 119-127. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.03.013
    [17]
    PANG H, KHANI A. Modeling park-and-ride location choice of heterogeneous commuters[J]. Transportation, 2018, 45(1): 71-87.
    [18]
    SHARMA B, HICKMAN M, NASSIR N. Park-and-ride lot choice model using random utility maximization and random regret minimization[J]. Transportation, 2019, 46(1): 217-232.
    [19]
    WANG J, WANG H, ZHANG X M. A hybrid management scheme with parking pricing and parking permit for a many-to-one park and ride network[J]. Transportation Research Part C: Emerging Technologies, 2020, 112: 153-79.
    [20]
    HUANG Y, GAN H C, LU H, et al. Park-and-ride choice behaviour under multimodal travel information-Analysis based on panel mixed Logit model[J]. IET Intelligent Transport Systems, 2023, 17(10): 2063-2074.
    [21]
    MEI Z Y, WEI D Q, DING W C, et al. Multi-agent simulation for multi-mode travel policy to improve park and ride efficiency[J]. Computers & Industrial Engineering, 2023, 185: 109660.
    [22]
    许胜博, 朱志国. 基于换乘次数的城市轨道交通有效径路集生成算法研究[J]. 交通运输工程与信息学报, 2017, 15 (2): 83-90, 99. https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC201702013.htm

    XU S B, ZHU Z G. Study on effective path set generating algorithm for urban rail transit based on transfer times[J]. Journal of Transportation Engineering and Information, 2017, 15(2): 83-90, 99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC201702013.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(7)

    Article Metrics

    Article views (256) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return