Volume 42 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
SHEN Mengjun, DONG Ningning, LI Tiezhu, GUO Jingwen, LIU Hui. A Method for Coordinated Passenger Flow Control at Stations During Peak Period Based on Genetic Algorithms[J]. Journal of Transport Information and Safety, 2024, 42(1): 131-141. doi: 10.3963/j.jssn.1674-4861.2024.01.015
Citation: SHEN Mengjun, DONG Ningning, LI Tiezhu, GUO Jingwen, LIU Hui. A Method for Coordinated Passenger Flow Control at Stations During Peak Period Based on Genetic Algorithms[J]. Journal of Transport Information and Safety, 2024, 42(1): 131-141. doi: 10.3963/j.jssn.1674-4861.2024.01.015

A Method for Coordinated Passenger Flow Control at Stations During Peak Period Based on Genetic Algorithms

doi: 10.3963/j.jssn.1674-4861.2024.01.015
  • Received Date: 2023-03-29
    Available Online: 2024-05-31
  • Passenger flow control at urban rail transit stations is an effective strategy for alleviating congestion during peak periods. However, existing measures often overlook cooperative relations among adjacent stations along the same line, indicating the need for further improvements to enhance its efficacy. In this paper, the interaction among passengers, trains, and stations is considered comprehensively. Train schedules are discretized during peak hours based on departure intervals at stations. These discrete time periods are utilized as the basis for our research and corresponding passenger arrival data are extracted accordingly. Taking into account both supply and demand considerations, optimization objectives focus on two primary aims of minimizing aggregate passenger delay time and maximizing passenger turnover volume. Considering the train transportation capacity, passenger flow control intensity, and station service level, the remaining train transportation capacity is introduced as a constraint to balance the passenger flow demand of different stations, and an optimization model station for coordinated station flow control is constructed. Given the complexity in solving multi-objective functions, an embedded genetic algorithm is proposed to address conflicts among optimal solutions. Using Line 3 of the Nanjing Metro as a case study, a comparative analysis is conducted with the scenario without coordinated flow control (first-come-first-served) during peak hours. The results show that a 1% increase in total passenger turnover results in a 2.3% decrease in the number of passenger delays, a 4.3% decrease in total passenger delay time, and significant alleviations of delays at congested sta-tions, leading to a more balanced spatial and temporal distribution of delays. To verify the algorithm's effectiveness and the model's stability, the genetic algorithm is compared with the Gurobi solver, and the sensitivity of a key parameter, the train load factor, is analyzed. The proposed genetic algorithm demonstrates better performance in addressing the dual optimization objective, thus aiding in the mitigation of significant passenger delays during peak hours.

     

  • loading
  • [1]
    刘莲花, 蒋亮. 城市轨道交通网络客流控制方法研究[J]. 铁道运输与经济, 2011, 33(5): 51-55 https://www.cnki.com.cn/Article/CJFDTOTAL-TDYS201105022.htm

    LIU L H, JIANG L. Research on passenger flow control method of urban rail transit network[J]. Railway Transportation and Economy, 2011, 33(5): 51-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDYS201105022.htm
    [2]
    姚向明, 赵鹏, 乔珂, 等. 城市轨道交通线路高峰客流控制方案鲁棒优化模型[J]. 铁道学报, 2021, 43(11): 29-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202111004.htm

    YAO X M, ZHAO P, QIAO K, et al. Robust optimization model of designing inflow control scheme for urban rail transit line during peak hours[J]. Journal of the China Railway Society, 2021, 43(11): 29-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202111004.htm
    [3]
    李登辉, 彭其渊, 鲁工圆, 等. 城市轨道交通高峰线路客流协同控制方法[J]. 交通运输系统工程与信息, 2019, 19(6): 141-147. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201906021.htm

    LI D H, PENG Q Y, LU G Y, et al. Control method for passenger inflow control with coordination on urban rail transit line in peak hours[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(6): 141-147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201906021.htm
    [4]
    冯树民, 陈勇, 辛梦薇. 突发大客流下地铁协调限流优化模型[J]. 哈尔滨工业大学学报, 2019, 51(2): 179-185. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201902026.htm

    FENG S M, CHEN Y, XING M W. Coordination passenger flow control model for metro under sudden large passenger flow[J]. Journal of Harbin Institute of Technology, 2019, 51(2): 179-185. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201902026.htm
    [5]
    杨静, 代盛旭, 周浪雅, 等. 城市轨道交通相邻多车站动态协同限流研究[J]. 铁道运输与经济, 2020, 42(3): 112-118. https://www.cnki.com.cn/Article/CJFDTOTAL-TDYS202003021.htm

    YANG J, DAI S X, ZHOU L Y, et al. A study on passenger flow control with multi-station dynamic coordination in urban transit system[J]. Railway Transport and Economy, 2020, 42(3): 112-118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDYS202003021.htm
    [6]
    YUAN F, SUN H, KANG L, et al. Passenger flow control strategies for urban rail transit networks[J]. Applied Mathematical Modelling, 2020, 82: 168-188. doi: 10.1016/j.apm.2020.01.041
    [7]
    JIANG Z, FAN W, LIU W, et al. Reinforcement learning approach for coordinated passenger inflow control of urban rail transit in peak hours[J]. Transportation Research Part C: Emerging Technologies, 2018, 88: 1-16.
    [8]
    XUE H, JIA L, GUO J. Adaptive multilevel collaborative passenger flow control in peak hours for a subway line[J]. Advances in Mathematical Physics, 2020, 2020: 1-16.
    [9]
    李鹏飞, 厉立. 城市轨道交通联动限流算法及实例分析[J]. 交通工程, 2022, 22(4): 33-39. https://www.cnki.com.cn/Article/CJFDTOTAL-DLJA202204005.htm

    LI P F, LI L. Coordinated passenger flow limiting algorithm of urban rail transit and case analysis[J]. Journal of Transportation Engineering, 2022, 22(4): 33-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLJA202204005.htm
    [10]
    赵庆亮, 冯晓斌, 吴枫, 等. 基于滚动时域控制的轨道交通车站单站限流策略研究[J]. 山东科学, 2023, 36(1): 99-106. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKX202301013.htm

    ZHAO Q L, FENG X B, WU F, et al. Single station traffic restriction strategy of rail transportation based on receding horizon control[J]. Shandong Science, 2023, 36(1): 99-106. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDKX202301013.htm
    [11]
    张辉. 基于强化学习的城轨客流控制与列车跳站协同优化研究[D]. 北京: 北京交通大学, 2022.

    ZHANG H. Research on collaborative optimization of passenger flow control and train skip-stopping in urban rail transit based on reinforcement learning[D]. Beijing: Beijing Jiaotong University, 2022. (in Chinese)
    [12]
    蒋琦玮, 蔡适, 陈维亚, 等. 城市轨道交通车站客流控制决策模型[J]. 系统工程, 2017, 35(9): 94-102. https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT201709012.htm

    JIANG W Q, CAI S, CHEN W Y, et al. Passenger flow control decision-making model of urban rail transit station[J]. Systems Engineering. 2017, 35(9): 94-102. (in chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT201709012.htm
    [13]
    卢亚菡, 杨立兴, 孟凡婷, 等. 城轨线路列车时刻表与车站客流控制协同优化方法[J]. 交通运输系统工程与信息, 2021, 21(6): 195-202. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202106022.htm

    LU Y H, YANG L X, MENG F T, et al. Collaborative optimization of train timetable and passenger flow control strategy for urban rail transit[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(6): 195-202. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202106022.htm
    [14]
    蒋琦玮, 苏建凯, 陈维亚. 考虑跨站停车的地铁客流协同控制模型[J]. 铁道科学与工程学报, 2021, 18(11): 2857-2864. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202111008.htm

    JIANG Q W, SU J K, CHEN W Y. Collaborative control model of metro passenger flow considering skip-stop strategy[J]. Journal of Railway Science and Engineering, 2021, 18(11): 2857-2864. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202111008.htm
    [15]
    韩忠贵. 基于跨站停车的地铁高峰时段多车站协同客流控制方案研究[D]. 南昌: 华东交通大学, 2022.

    HAN Z G. The passenger flow control model research based on cross-station parking and station passenger flow control strategy during peak hours[D]. Nangchang: East China Jiaotong University, 2022. (in Chinese)
    [16]
    LU Y, YANG L, YANG K, et al. A distributional robust opti-mization method for passenger flow control strategy and train scheduling on an urban rail transit line[J]. Engineering, 2022, 12: 202-220.
    [17]
    JIANG Z, HSU C, ZHANG D, et al. Evaluating rail transit timetable using big passengers'data[J]. Journal of Computer and System Sciences, 2016, 82(1): 144-155.
    [18]
    YUAN F, SUN H, KANG L, et al. Joint optimization of train scheduling and dynamic passenger flow control strategy with headway-dependent demand[J]. Transportmetrica, 2022, 10(1): 627-651.
    [19]
    朱凌. 不确定环境下城市轨道交通列车交路计划与时刻表编制协同优化策略[D]. 北京: 北京交通大学, 2022.

    ZHU L. Collaborative optimization strategy of urban rail transit short-turning plan and train scheduling under uncertain environment[D]. Beijing: Beijing Jiaotong University, 2022. (in Chinese)
    [20]
    康崇仁, 杨欣, 张萍, 等. 地铁乘客限流控制与列车运行图协同优化方法研究[J]. 交通运输工程与信息学报, 2023, 21(1): 94-112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC202301007.htm

    KANG C R, YANG X, ZHANG P, et al. Collaborative optimization method of passenger flow control and train timetable for metro systems[J]. Journal of Transportation Engineering and Information, 2023, 21(1): 94-112. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC202301007.htm
    [21]
    陈维亚, 章雍, 陈鑫, 等. 城市轨道交通大小交路开行方案与多站联合限流协同优化研究[J]. 交通运输系统工程与信息, 2019, 19(5): 177-184. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201905025.htm

    CHEN W Y, ZHANG Y, CHEN XIN, et al. Collaborative full-length and short-turning plan and joint multi-station control of passenger flow in urban rail transit[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(5): 177-184. (in chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201905025.htm
    [22]
    林立, 孟学雷, 程晓卿, 等. 考虑碳排放效果的城轨列车开行方案编制方法[J]. 交通信息与安全, 2023, 41(5): 176-184. doi: 10.3963/j.jssn.1674-4861.2023.05.018

    LIN L, MENG X L, CHENG X Q, et al. A method for developing service plan of urban rail train considering carbon emissions impacts[J]. Journal of Transport Information and Safety, 2023, 41(5): 176-184. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.05.018
    [23]
    刘春宏. 基于历史数据的轨道交通网络大客流分级协同组织模型及算法分析[J]. 交通世界(上旬刊), 2019(8): 12-13. https://www.cnki.com.cn/Article/CJFDTOTAL-JTSJ201922004.htm

    LIU C H. Hierarchical collaborative organization model and algorithm analysis of large passenger flow in rail transit network based on historical data[J]. Transportation World(last issue), 2019(8): 12-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTSJ201922004.htm
    [24]
    赵鹏, 姚向明, 禹丹丹. 高峰时段城市轨道交通线路客流协调控制[J]. 同济大学学报(自然科学版), 2014, 42(9): 1340-1346, 1443. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201409006.htm

    ZHAO P, YAO X M, YU D D. Cooperative passenger inflow control of urban mass transit in peak hours[J]. Journal of Tongji University (Natural Science), 2014, 42(9): 1340-1346, 1443. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201409006.htm
    [25]
    李雨恒. 高峰期地铁客流网络协调控制研究——以广州地铁为例[D]. 广州: 华南理工大学, 2021.

    LI Y H. Research on network coordinated control of subway passenger flow during peak period: a case study of guangzhou metro[D]. Guangzhou: South China University of Technology, 2021. (in chinese)
    [26]
    王久亮. 城市轨道交通车站设施设备服务水平分级与能力计算方法研究[D]. 北京: 北京交通大学, 2011.

    WANG J L. Research on service level classification and capacity calculation method of urban rail transit station facilities[D]. Beijing: Beijing Jiaotong University, 2011. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(6)

    Article Metrics

    Article views (138) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return