Volume 41 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
TANG Wei, FANG Jianan, ZHANG Long, YANG Xiaodong, LI Guoqiang. A Method for Measuring Visibility under Foggy Weather for Expressways Based on Siamese Network[J]. Journal of Transport Information and Safety, 2023, 41(4): 122-131. doi: 10.3963/j.jssn.1674-4861.2023.04.013
Citation: TANG Wei, FANG Jianan, ZHANG Long, YANG Xiaodong, LI Guoqiang. A Method for Measuring Visibility under Foggy Weather for Expressways Based on Siamese Network[J]. Journal of Transport Information and Safety, 2023, 41(4): 122-131. doi: 10.3963/j.jssn.1674-4861.2023.04.013

A Method for Measuring Visibility under Foggy Weather for Expressways Based on Siamese Network

doi: 10.3963/j.jssn.1674-4861.2023.04.013
  • Received Date: 2023-03-22
    Available Online: 2023-11-23
  • Accurately identifying highway visibility levels in foggy weather from surveillance video is important for intelligent highway supervision. Aiming at the problems of low accuracy, slow rate, and weak generalization of the current visibility recognition methods on highways, a visibility recognition method based on Siamese network is proposed, focusing on the optimization of the image feature extraction module and the fog visibility level recognition. The image feature extraction module adopts the improved VGG16 network as the backbone network. In order to enhance the ability of the network to extract important features from the global information of the image, a convolution block attention module is added to the five blocks of the VGG16 network to emphasize the effective features and suppress the useless features. To improve the generalization ability and training rate of the network, a filter response normalization layer is added after the convolutional layer of the network to remove the differences between the dimensional data. In order to solve the redundancy problem of network weight parameters and prevent overfitting, global average pooling is used to compress the output feature map directly into a 1×1 vector instead of the first two fully connected layers in the VGG16 network. A Siamese network is adopted as the main framework of the fog visibility level recognition module, and the effective features extracted by the image feature extraction module are propagated forward. The distance measurement method is utilized in the contrastive loss function to assess the similarity between input image pairs in a high-dimensional space for fog visibility level recognition. Experiments are conducted based on a dataset of actual foggy images collected from August 2022 to January 2023 on highways in Shaanxi Province. The experimental results show that the recognition accuracy of the proposed method is 90.3%, which is an improvement of 20.4%, 18.9%, and 18.0% compared to the single networks AlexNet, ResNet50, and VGG16, respectively. It is also an improvement of 16.2%, 11.0%, and 5.4% compared to the Siamese networks Simaese-AlexNet, Simaese-ResNet50, and Simaese-VGG16, respectively, which constructed based on single networks as benchmark models. In conclusion, this method exhibits a high accuracy, which contributes to enhancing the intelligent supervision capabilities for foggy weather conditions on highways.

     

  • loading
  • [1]
    张驰, 周郁茗, 张敏, 等. 交通事故导致的高速公路拥堵状态判别方法[J]. 交通信息与安全, 2023, 41(1): 23-33. doi: 10.3963/j.jssn.1674-4861.2023.01.003

    ZHANG C, ZHOU Y M, ZHANG M, et al. A method for identifying traffic congestion resulting from accidents on freeways[J]. Journal of Transport Information and Safety, 2023, 41(1): 23-33. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.01.003
    [2]
    交通强国建设评价指标体系[J]. 中国水运, 2022(4): 12-15.

    Evaluation index system for the construction of a powerful transportation country[J]. China Water Transport, 2022, 4: 12-15. (in Chinese)
    [3]
    刘钦, 宋太龙, 李振龙, 等. 小样本下基于迁移学习与LSTM的雾天高速公路车辆跟驰模型[J]. 交通信息与安全, 2023, 41(1): 13-22. doi: 10.3963/j.jssn.1674-4861.2023.01.002

    LIU Q, SONG T L, LI Z L, et al. A car-following model for expressway under foggy weather based on transfer learning and LSTM with small-sample[J]. Journal of Transport Information and Safety, 2023, 41(1): 13-22. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.01.002
    [4]
    龙学军, 高枫. 基于深度学习的高速公路气象识别方法[J]. 中国交通信息化, 2021(5): 134-136. https://www.cnki.com.cn/Article/CJFDTOTAL-JTXC202105018.htm

    LONG X J, GAO F. Highway weather recognition method based on deep learning[J]. China ITS Journal, 2021(5): 134-136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTXC202105018.htm
    [5]
    GU J, WANG Z, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354-377. doi: 10.1016/j.patcog.2017.10.013
    [6]
    LI S, FU H, LO W L. Meteorological visibility evaluation on webcam weather image using deep learning features[J]. Int. J. Comput. Theory Eng, 2017, 9(6): 455-461. doi: 10.7763/IJCTE.2017.V9.1186
    [7]
    WANG H, SHEN K, YU P, et al. Multimodal deep fusion network for visibility assessment with a small training dataset[J]. IEEE Access, 2020(8): 217057-217067.
    [8]
    刘冬韡, 穆海振, 贺千山, 等. 1种基于实景图像的低能见度识别算法[J]. 应用气象学报, 2022, 33(4): 501-512. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX202204010.htm

    LIU D W, MU H Z, HE Q S, et al. A low visibility recognition algorithm based on surveillance video[J]. Journal of Applied Meteorological Science, 2022, 33(4): 501-512. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX202204010.htm
    [9]
    曹爽亮, 杨亚莉, 陈浩, 等. 基于卷积神经网络的能见度估算[J]. 软件工程, 2021, 24(8): 2-5. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGC202108002.htm

    CAO S L, YANG Y L, CHEN H, et al. Visibility estimation based on convolutional neural network[J]. Software Engineering, 2021, 24(8): 2-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGC202108002.htm
    [10]
    苗开超, 周建平, 陶鹏, 等. 自适应混合卷积神经网络的雾图能见度识别[J]. 计算机工程与应用, 2020, 56(10): 205-212. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202010032.htm

    MIAO K C, ZHOU J P, TAO P, et al. Visibility recognition of fog figure based on self-adaptive hybrid convolutional neural network[J]. Computer Engineering and Applications, 2020, 56(10): 205-212. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202010032.htm
    [11]
    黄亮, 张振东, 肖鹏飞, 等. 基于深度学习的公路能见度分类及应用[J]. 大气科学学报, 2022, 45(2): 203-211. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202202005.htm

    HUANG L, ZHANG Z D, XIAO P F, et al. Classification and application of highway visibility based on deep learning[J]. Transactions of Atmospheric Sciences, 2022, 45(2): 203-211. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202202005.htm
    [12]
    LI Z, ZOU H, SUN X, et al. 3d expression-invariant face verification based on transfer learning and siamese network for small sample size[J]. Electronics, 2021, 10(17): 2128.
    [13]
    张伟光, 钟靖涛, 呼延菊, 等. 基于VGG16-UNet语义分割模型的路面龟裂形态提取与量化[J]. 交通运输工程学报, 2023, 23(2): 166-182. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202302012.htm

    ZHANG W G, ZHONG J T, HU Y J, et al. Extraction and quantification of pavement alligator crack morphology based on VGG16-UNet semantic segmentation model[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 166-182. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202302012.htm
    [14]
    胡丹丹, 张忠婷, 牛国臣. 融合CBAM注意力机制与可变形卷积的车道线检测[J/OL]. 北京航空航天大学学报: 1-14[2023-03-02].

    HU D D, ZHANG Z T, NIU G C. Lane line detection incorporating CBAM attention mechanism and deformable convolution[J/OL]. Journal of Beijing University of Aeronautics and Astronautics: 1-14[2023-03-02]. (in Chinese)
    [15]
    IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]. International Conference on Machine Learning. Lile, France: IMLS, 2015.
    [16]
    SINGH S, KRISHNAN S. Filter response normalization layer: eliminating batch dependence in the training of deep neural networks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual. Online, USA: IEEE, 2020.
    [17]
    刘超军, 段喜萍, 谢宝文. 应用GhostNet卷积特征的ECO目标跟踪算法改进[J]. 激光技术, 2022, 46(2): 239-247. https://www.cnki.com.cn/Article/CJFDTOTAL-JGJS202202019.htm

    LIU C J, DUAN X P, XIE B W. Improvement of ECO target tracking algorithm based on GhostNet convolution feature[J]. Laser Technology, 2022, 46(2): 239-247. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGJS202202019.htm
    [18]
    陶倩文, 胡钊政, 万金杰, 等. 基于点云极化表征与孪生网络的智能车定位[J]. 电子与信息学报, 2023, 45(4): 1163-1172. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202304003.htm

    TAO Q W, HU Z Z, WAN J J, et al. Intelligent vehicle localization based on polarized LiDAR representation and siamese network[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1163-1172. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202304003.htm
    [19]
    KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
    [20]
    张伟光, 钟靖涛, 呼延菊, 等. 基于VGG16-UNet语义分割模型的路面龟裂形态提取与量化[J]. 交通运输工程学报, 2023, 23(2): 166-182. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202302012.htm

    ZHANG W G, ZHONG J T, HU Y J, et al. Extraction and quantification of pavement alligator crack morphology based on VGG16-UNet semantic segmentation model[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 166-182. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202302012.htm
    [21]
    徐慧智, 闫卓远, 常梦莹. 1种结合ResNet和迁移学习的交通标志识别方法[J]. 重庆理工大学学报(自然科学), 2023, 37(3): 264-273. https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL202303030.htm

    XU H Z, YAN Z Y, CHANG M Y. A traffic sign recognition method based on ResNet and transfer learning[J]. Journal of Chongqing University of Technology(Natural Science), 2023, 37(3): 264-273. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL202303030.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(3)

    Article Metrics

    Article views (482) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return