Citation: | TANG Wei, FANG Jianan, ZHANG Long, YANG Xiaodong, LI Guoqiang. A Method for Measuring Visibility under Foggy Weather for Expressways Based on Siamese Network[J]. Journal of Transport Information and Safety, 2023, 41(4): 122-131. doi: 10.3963/j.jssn.1674-4861.2023.04.013 |
[1] |
张驰, 周郁茗, 张敏, 等. 交通事故导致的高速公路拥堵状态判别方法[J]. 交通信息与安全, 2023, 41(1): 23-33. doi: 10.3963/j.jssn.1674-4861.2023.01.003
ZHANG C, ZHOU Y M, ZHANG M, et al. A method for identifying traffic congestion resulting from accidents on freeways[J]. Journal of Transport Information and Safety, 2023, 41(1): 23-33. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.01.003
|
[2] |
交通强国建设评价指标体系[J]. 中国水运, 2022(4): 12-15.
Evaluation index system for the construction of a powerful transportation country[J]. China Water Transport, 2022, 4: 12-15. (in Chinese)
|
[3] |
刘钦, 宋太龙, 李振龙, 等. 小样本下基于迁移学习与LSTM的雾天高速公路车辆跟驰模型[J]. 交通信息与安全, 2023, 41(1): 13-22. doi: 10.3963/j.jssn.1674-4861.2023.01.002
LIU Q, SONG T L, LI Z L, et al. A car-following model for expressway under foggy weather based on transfer learning and LSTM with small-sample[J]. Journal of Transport Information and Safety, 2023, 41(1): 13-22. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.01.002
|
[4] |
龙学军, 高枫. 基于深度学习的高速公路气象识别方法[J]. 中国交通信息化, 2021(5): 134-136. https://www.cnki.com.cn/Article/CJFDTOTAL-JTXC202105018.htm
LONG X J, GAO F. Highway weather recognition method based on deep learning[J]. China ITS Journal, 2021(5): 134-136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTXC202105018.htm
|
[5] |
GU J, WANG Z, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354-377. doi: 10.1016/j.patcog.2017.10.013
|
[6] |
LI S, FU H, LO W L. Meteorological visibility evaluation on webcam weather image using deep learning features[J]. Int. J. Comput. Theory Eng, 2017, 9(6): 455-461. doi: 10.7763/IJCTE.2017.V9.1186
|
[7] |
WANG H, SHEN K, YU P, et al. Multimodal deep fusion network for visibility assessment with a small training dataset[J]. IEEE Access, 2020(8): 217057-217067.
|
[8] |
刘冬韡, 穆海振, 贺千山, 等. 1种基于实景图像的低能见度识别算法[J]. 应用气象学报, 2022, 33(4): 501-512. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX202204010.htm
LIU D W, MU H Z, HE Q S, et al. A low visibility recognition algorithm based on surveillance video[J]. Journal of Applied Meteorological Science, 2022, 33(4): 501-512. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX202204010.htm
|
[9] |
曹爽亮, 杨亚莉, 陈浩, 等. 基于卷积神经网络的能见度估算[J]. 软件工程, 2021, 24(8): 2-5. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGC202108002.htm
CAO S L, YANG Y L, CHEN H, et al. Visibility estimation based on convolutional neural network[J]. Software Engineering, 2021, 24(8): 2-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGC202108002.htm
|
[10] |
苗开超, 周建平, 陶鹏, 等. 自适应混合卷积神经网络的雾图能见度识别[J]. 计算机工程与应用, 2020, 56(10): 205-212. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202010032.htm
MIAO K C, ZHOU J P, TAO P, et al. Visibility recognition of fog figure based on self-adaptive hybrid convolutional neural network[J]. Computer Engineering and Applications, 2020, 56(10): 205-212. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202010032.htm
|
[11] |
黄亮, 张振东, 肖鹏飞, 等. 基于深度学习的公路能见度分类及应用[J]. 大气科学学报, 2022, 45(2): 203-211. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202202005.htm
HUANG L, ZHANG Z D, XIAO P F, et al. Classification and application of highway visibility based on deep learning[J]. Transactions of Atmospheric Sciences, 2022, 45(2): 203-211. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202202005.htm
|
[12] |
LI Z, ZOU H, SUN X, et al. 3d expression-invariant face verification based on transfer learning and siamese network for small sample size[J]. Electronics, 2021, 10(17): 2128.
|
[13] |
张伟光, 钟靖涛, 呼延菊, 等. 基于VGG16-UNet语义分割模型的路面龟裂形态提取与量化[J]. 交通运输工程学报, 2023, 23(2): 166-182. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202302012.htm
ZHANG W G, ZHONG J T, HU Y J, et al. Extraction and quantification of pavement alligator crack morphology based on VGG16-UNet semantic segmentation model[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 166-182. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202302012.htm
|
[14] |
胡丹丹, 张忠婷, 牛国臣. 融合CBAM注意力机制与可变形卷积的车道线检测[J/OL]. 北京航空航天大学学报: 1-14[2023-03-02].
HU D D, ZHANG Z T, NIU G C. Lane line detection incorporating CBAM attention mechanism and deformable convolution[J/OL]. Journal of Beijing University of Aeronautics and Astronautics: 1-14[2023-03-02]. (in Chinese)
|
[15] |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]. International Conference on Machine Learning. Lile, France: IMLS, 2015.
|
[16] |
SINGH S, KRISHNAN S. Filter response normalization layer: eliminating batch dependence in the training of deep neural networks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual. Online, USA: IEEE, 2020.
|
[17] |
刘超军, 段喜萍, 谢宝文. 应用GhostNet卷积特征的ECO目标跟踪算法改进[J]. 激光技术, 2022, 46(2): 239-247. https://www.cnki.com.cn/Article/CJFDTOTAL-JGJS202202019.htm
LIU C J, DUAN X P, XIE B W. Improvement of ECO target tracking algorithm based on GhostNet convolution feature[J]. Laser Technology, 2022, 46(2): 239-247. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGJS202202019.htm
|
[18] |
陶倩文, 胡钊政, 万金杰, 等. 基于点云极化表征与孪生网络的智能车定位[J]. 电子与信息学报, 2023, 45(4): 1163-1172. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202304003.htm
TAO Q W, HU Z Z, WAN J J, et al. Intelligent vehicle localization based on polarized LiDAR representation and siamese network[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1163-1172. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202304003.htm
|
[19] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
|
[20] |
张伟光, 钟靖涛, 呼延菊, 等. 基于VGG16-UNet语义分割模型的路面龟裂形态提取与量化[J]. 交通运输工程学报, 2023, 23(2): 166-182. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202302012.htm
ZHANG W G, ZHONG J T, HU Y J, et al. Extraction and quantification of pavement alligator crack morphology based on VGG16-UNet semantic segmentation model[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 166-182. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202302012.htm
|
[21] |
徐慧智, 闫卓远, 常梦莹. 1种结合ResNet和迁移学习的交通标志识别方法[J]. 重庆理工大学学报(自然科学), 2023, 37(3): 264-273. https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL202303030.htm
XU H Z, YAN Z Y, CHANG M Y. A traffic sign recognition method based on ResNet and transfer learning[J]. Journal of Chongqing University of Technology(Natural Science), 2023, 37(3): 264-273. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL202303030.htm
|