Volume 41 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
LI Zhihong, SHEN Tianyu, WEN Yanjie, XU Wangtu. Order Demand Prediction and Anomaly-point Identification for Online Car-hailing Orders Based on Hybrid Machine Learning Framework[J]. Journal of Transport Information and Safety, 2023, 41(3): 157-165. doi: 10.3963/j.jssn.1674-4861.2023.03.017
Citation: LI Zhihong, SHEN Tianyu, WEN Yanjie, XU Wangtu. Order Demand Prediction and Anomaly-point Identification for Online Car-hailing Orders Based on Hybrid Machine Learning Framework[J]. Journal of Transport Information and Safety, 2023, 41(3): 157-165. doi: 10.3963/j.jssn.1674-4861.2023.03.017

Order Demand Prediction and Anomaly-point Identification for Online Car-hailing Orders Based on Hybrid Machine Learning Framework

doi: 10.3963/j.jssn.1674-4861.2023.03.017
  • Received Date: 2022-12-07
    Available Online: 2023-09-16
  • The demand for urban ride-hailing services holds significant potential for understanding residents'travel behaviors, patterns and intrinsic characteristics. Accurately identifying anomalies and optimizing scheduling from the complex and dynamic spatio-temporal data of ride-hailing usage can contribute to extending a platform's capacity. Time series graph of ride-hailing order data is established to analyze its dynamic characteristics. Therefore, a hybrid prediction model that predicts ride-hailing order demand based on machine learning methods, called ARIMA-BPNN-DSR (ABD), is proposed by integrating the auto regressive integrated moving average model (ARIMA) and the back propagation neural network (BPNN) modules. To achieve the hybrid prediction model, the dynamic selection of regression (DSR) method is applied to fuse these two modules. The DSR method takes advantage of the robustness of statistical methods and the efficiency of machine learning methods, and considers the performance of independent models within the local data space. Extensive experiments and analyses are conducted on the time series data from Didi's ride-hailing order demand in Xiamen City, including data from 2019 (without epidemic) and data from 2020 (with epidemic). Experimental results show that: ①The ABD model outperforms baseline models, providing accurate predictions for peak demand. Therefore, incorporating ensemble learning strategies significantly improves the prediction accuracy of the proposed model. ②Ablation experiments reveal that the BPNN significantly enhances the predictive performance of the fusion model in standard sequences. Compared to individual ARIMA and BPNN models, the mean absolute error (MAE) of ABD model is reduced by 22.77% and 13.50%, and the mean absolute percentage error (MAPE) is reduced by 21.71% and 12.37%, respectively. Considering the external interference in 2020, the stability provided by ARIMA is essential. ③By comparing the error between historical data and predicted results with the 3-sigma anomaly detection criteria, ABD model accurately identifies anomalies in the order data, thereby increasing the efficiency of traffic management. In conclusion, the proposed ABD model has a better performance in both accuracy and robustness.

     

  • loading
  • [1]
    HUSHCHYN M, USTYUZHANIN A. Generalization of change-point detection in time series data based on direct density ratio estimation[J]. Journal of Computational Science, 2021(53): 101385.
    [2]
    HEIRUNG T A N, MESBAH A. Input design for active fault diagnosis[J]. Annual Reviews in Control, 2019(47): 35-50.
    [3]
    KOUW W M, LOOG M. A review of domain adaptation without target labels[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(3): 766-785. doi: 10.1109/TPAMI.2019.2945942
    [4]
    SMITH B L, WILLIAMS B M, KEITH OSWALD R. Comparison of parametric and nonparametric models for traffic flow forecasting[J]. Transportation Research Part C: Emerging Technologies, 2002, 10(4): 303-321. doi: 10.1016/S0968-090X(02)00009-8
    [5]
    张春辉, 宋瑞, 孙杨. 基于卡尔曼滤波的公交站点短时客流预测[J]. 交通运输系统工程与信息, 2011, 11(4): 154-159. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201104025.htm

    ZHANG C H, SONG R, SUN Y. Kalman filter-based short-term passenger flow forecasting on bus stop[J]. Journal of Transportation Systems Engineering and Information Technology, 2011, 11(4): 154-159. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201104025.htm
    [6]
    文琰杰, 许旺土, 张晓阳, 等. 基于SVR的逐日网约车服务需求预测方法[J]. 城市建筑, 2021, 18(10): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCS202110012.htm

    WEN Y J, XU W T, ZHANG X Y, et al. Forecasting method of daily network rounding service demand based on SVR[J]. Urbanism andArchitecture, 2021, 18(10): 50-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCS202110012.htm
    [7]
    余婷, 裴莉莉, 李伟, 等. 基于随机森林算法的路面状况指数预测[J]. 公路交通科技, 2021, 38(10): 16-23. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202110003.htm

    YU T, PEI L L, LI W. Prediction of pavement surface condition index based on random forest algorithm[J]. Journal of Highway and Transportation Research and Development, 2021, 38(10): 16-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202110003.htm
    [8]
    赵顗, 沈玲宏, 马健霄, 等. 综合小波分解和BP神经网络的交通小区生成交通短时预测[J]. 重庆交通大学学报(自然科学版), 2021, 40(11): 60-66. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT202111009.htm

    ZHAO Y, SHEN L H, MA J X, et al. Traffic short-term prediction generated by wavelet decomposition and BP neural network of traffic zone[J]. Journal of Chongqing Jiaotong University(Natural Science), 2021, 40(11): 60-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT202111009.htm
    [9]
    GENG X, LI Y, WANG L, et al. Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 3656-3663. doi: 10.1609/aaai.v33i01.33013656
    [10]
    黄昕, 毛政元. 基于时空多图卷积网络的网约车乘客需求预测[J]. 地球信息科学学报, 2023, 25(2): 311-323. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202302007.htm

    HUANG X, MAO Z Y. Prediction of passenger demand for online car-hailing based on spatio-temporal multi-graph convolution network[J]. Journal of Geo-information Science, 2023, 25(2): 311-323. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202302007.htm
    [11]
    LIAO L, LI B, ZOU F, et al. MFGCN: a multimodal fusion graph convolutional network for online car-hailing demand prediction[J]. IEEE Intelligent Systems, 2023, 38(3): 21-30.
    [12]
    帅春燕, 王昱翔, 许庚. 混合模型在网约车出行预测研究中的应用[J]. 重庆理工大学学报(自然科学), 2022, 36(7): 162-169. https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL202207021.htm

    SHUAI C Y, WANG Y X, XU G. Application of hybrid model in ride-hailing trip prediction research[J]. Journal of Chongqing University of Technology(Natural Science), 2022, 36(7): 162-169. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL202207021.htm
    [13]
    谷远利, 李萌, 芮小平, 等. 基于深度学习的网约车供需缺口短时预测研究[J]. 交通运输系统工程与信息, 2019, 19(2): 223-230. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201902032.htm

    GU Y L, LI M, RUI X P, et al. Short-term forecasting of supply-demand gap under online car-hailing services based on deep learning[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(2): 223-230. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201902032.htm
    [14]
    CHEN Z, LIU K, WANG J, et al. H-ConvLSTM-based bagging learning approach for ride-hailing demand prediction considering imbalance problems and sparse uncertainty[J]. Transportation Research Part C: Emerging Technologies, 2022(140): 103709.
    [15]
    LAM P, WANG L, NGAN H Y, et al. Outlier detection in large-scale traffic data by naive bayes method and gaussian mixture model method[C]. IS&T International Symposium on Electronic Imaging: Intelligent Robotics and Industrial Applications using Computer Vision, Burlingame, USA: Society for Imaging Science and Technology(IS&T), 2017.
    [16]
    DANG T T, NGAN H Y T, LIU W. Distance-based k-nearest neighbors outlier detection method in large-scale traffic data[C]. IEEE International Conference on Digital Signal Processing(DSP), Singapore: IEEE, 2015
    [17]
    CHENG Y, ZHANG Y, HU J, et al. Mining for similarities in urban traffic flow using wavelets[C]. 2007 IEEE Intelligent Transportation Systems Conference, Bellevue, USA: IEEE, 2007.
    [18]
    许淼, 刘宏飞, 苏岳龙. 考虑交通事件影响的城市道路行程时间预测[J]. 中国公路学报, 2021, 34(12): 229-238. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202112017.htm

    XU M, LIU H F, SU Y L. Urban road travel time prediction considering impact of traffic event[J]. China Journal of Highway and Transport, 2021, 34(12): 229-238. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202112017.htm
    [19]
    闫少华, 谢晓璇, 张兆宁. 基于小波优化GRU-ARMA模型的空中交通流量短时预测方法[J]. 交通信息与安全, 2022, 40(4): 177-184. doi: 10.3963/j.jssn.1674-4861.2022.04.019

    YAN Shaohua, XIE Xiaoxuan, ZHANG Zhaoning. A short-term prediction of air traffic flow based on a wavelet-optimized GRU-ARMA model[J]. Journal of Transport Information and Safety, 2022, 40(4): 177-184. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.04.019
    [20]
    SUN B, CHENG W, GOSWAMI P, et al. Short-term traffic forecasting using self-adjusting k-nearest neighbours[J]. IET Intelligent Transport Systems, 2018, 12(1): 41-48.
    [21]
    杨国亮, 温钧林, 赖振东, 等. 基于速度门控时空图卷积网络的交通流预测[J]. 传感器与微系统, 2022, 41(8): 128-30+35. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ202208032.htm

    YANG G L, WEN J L, LAI Z D, et al. Traffic flow prediction based on speed gated spatiotemporal graph convolution network[J]. Transducer and Microsystem Technologies, 2022, 41(8): 128-130+135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ202208032.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(5)

    Article Metrics

    Article views (559) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return