Volume 41 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
HU Song, YANG Bei, WENG Jiancheng, ZHOU Wei. A Cause Analysis of Residents' Dependence on Public Transportation Based on Association Rules[J]. Journal of Transport Information and Safety, 2023, 41(3): 147-156. doi: 10.3963/j.jssn.1674-4861.2023.03.016
Citation: HU Song, YANG Bei, WENG Jiancheng, ZHOU Wei. A Cause Analysis of Residents' Dependence on Public Transportation Based on Association Rules[J]. Journal of Transport Information and Safety, 2023, 41(3): 147-156. doi: 10.3963/j.jssn.1674-4861.2023.03.016

A Cause Analysis of Residents' Dependence on Public Transportation Based on Association Rules

doi: 10.3963/j.jssn.1674-4861.2023.03.016
  • Received Date: 2022-11-29
    Available Online: 2023-09-16
  • Identifying the magnitude of travelers' dependence on public transit (PT) and analyzing the differences in its underlying causes can contribute to targeted improvements in the level of PT services from the perspectives of planning, design and policy making. In this study, an online revealed preference (RP) survey for residents' travel is designed and carried out. The data quality is examined, based on which the correlation matching technique is adopted to extract individual PT-trip chains by integrating travel survey data and PT transaction data. Measurement indicators and key causation indicators of PT dependence are proposed, and an AGNES-Apriori model is developed to classify travelers' PT dependence and strong association rules for different groups. Further, a two-stage framework and a set of travel incentive strategies to enhance travelers' PT dependence levels are proposed. The results show that ①residents'PT dependence can be classified into four categories (low, relatively low, relatively high, and high dependences), and significant differences are found among the different categories regarding the strong association rules; ②the number of indicators contained in association rules is negatively correlated with three parameters, and the probability of strong association rules with high dependence level is 2.1 times higher than that with low dependence level; ③objective factors such as total distance from home and destination to the PT stations, income, and car availability are identified as key indicators affecting residents' PT dependence, and the low freedom for traveling by PT is an important reason for the reduction of travelers' dependence on PT; ④the low values of the objective factors usually cause the travelers to form a relatively high PT dependence; ⑤the low availability of cars mainly related to the strong association rules corresponding to the low and high PT dependence groups, while the high dependence group may show the tendency of reducing PT dependence with increased car availability.

     

  • loading
  • [1]
    TU M T, LI W X, ORFIA O, et al. Exploring nonlinear effects of the built environment on ridesplitting: Evidence from Chengdu[J]. Transportation Research Part D: Transport and Environment, 2021(93): 102776.
    [2]
    ZHAO X L, YAN X, YU A, et al. Prediction and behavioral analysis of travel mode choice: A comparison of machine learning and logit models[J]. Travel Behaviour and Society, 2020(20): 22-35.
    [3]
    LUO M, MA Z L, ZHAO W J, et al. An ex-post evaluation of the public acceptance of a license plate-based restriction policy: A case study of Xi'an, China[J]. Transportation Research Part A: Policy and Practice, 2022(155): 259-282.
    [4]
    戢晓峰, 杨春丽. 欠发达地区高铁出行意愿多群组结构方程模型[J]. 北京交通大学学报, 2022, 46(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT202203002.htm

    JI X F, YANG C L. Multi-group structural equation model of travel intention to take high-speed rail in underdeveloped areas[J]. Journal of Beijing Jiaotong University, 2022, 46(3): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT202203002.htm
    [5]
    姚恩建, 李翠萍, 郇宁, 等. 共享单车对通勤走廊出行结构的影响[J]. 华南理工大学学报(自然科学版), 2020, 48(7): 85-92, 142. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG202007010.htm

    YAO E J, LI C P, HUAN N, et al., et al. Impact of shared bicycles on the configuration of travel mode in commuting corridor[J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(7): 85-92, 142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG202007010.htm
    [6]
    云美萍, 刘广洋, 刘芳. 公交服务质量变化对出行方式选择行为的影响[J]. 中国公路学报, 2017, 30(7): 119-125. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201707015.htm

    YUN M P, LIU G Y, LIU F. Influence of change of public transportation service quality on travel mode choice behavior[J]. China Journal of Highway and Transport, 2017, 30(7): 119-125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201707015.htm
    [7]
    杨亚璪, 唐浩冬, 彭勇. 考虑偏好差异的后疫情时代居民出行方式选择行为研究[J]. 交通运输系统工程与信息, 2022, 22(3): 15-24. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202203003.htm

    YANG Y Z, TANG H D, PENG Y. Residents' travel mode choice behavior in post-COVID-19 era considering preference differences[J] Journal of Transportation Systems Engineering and Information Technology, 2022, 22(3): 15-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202203003.htm
    [8]
    ARROYO R, TOMÁS R, LIDÓN M, et al. Influence of values, attitudes towards transport modes and companions on travel behavior[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2020(71): 8-22.
    [9]
    李海杰, 苗蕾, 聂磊, 等. 基于关联规则和主成分分析的高铁旅客购票行为特征研究[J]. 铁道科学与工程学报, 2023, 20(6): 2013-2025. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202306007.htm

    LI H J, MIAO L, NIE L, et al. High-speed railway passenger ticketing behavior characteristics based on association rules and principal component analysis[J]. Journal of Railway Science and Engineering, 2023, 20(6): 2013-2025. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202306007.htm
    [10]
    龙彦, 黄建玲, 赵晓华, 等. 基于多视图协同交互技术的换道图谱构建与分类[J]. 交通信息与安全, 2022, 40(1): 106-115. doi: 10.3963/j.jssn.1674-4861.2022.01.013

    LONG Y, HUANG J L, ZHAO X H, et al. Development and classification of lane-changing graph based on multi-view collaborative and interactive techniques[J]. Journal of Transport Information and Safety, 2022, 40(1): 106-115. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.01.013
    [11]
    YANG Y, YUAN Z Z, SUN D Y, et al. Analysis of the factors influencing highway crash risk in different regional types based on improved Apriori algorithm[J]. Advances in Transportation Studies, 2019(49): 165-178.
    [12]
    YU W H. Discovering frequent movement paths from taxi trajectory data using spatially embedded networks and association rules[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(3): 855-866.
    [13]
    GUO X, WANG D Z W, WU J, et al. Mining commuting behavior of urban rail transit network by using association rules[J]. Physica A: Statistical Mechanics and its Applications, 2020(559): 125094.
    [14]
    王颖志, 沈雅婕, 王立君. 基于改进兴趣度度量与Apriori算法的交通事故多发点成因分析[J]. 浙江大学学报: (理学版), 2021, 48(3): 349-355. https://www.cnki.com.cn/Article/CJFDTOTAL-HZDX202103011.htm

    WANG Y Z, SHEN Y J, WANG L J. The causes analysis of traffic accident black spots based on improved interest measurement and Apriori algorithm[J]. Journal of Zhejiang University(Science Edition), 2021, 48(3): 349-355(. in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZDX202103011.htm
    [15]
    许研, 纪雪洪, 叶玫. 基于出行时空数据的分时租赁汽车与网约车出行场景比较研究[J]. 地球信息科学学报, 2021, 23(8): 1461-1472. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202108011.htm

    XU Y, JI X H, YE M. Travel scenes comparison of time-sharing and car-hailing based on traveling spatiotemporal data[J]. Journal of Geo-information Science, 2021, 23(8): 1461-1472. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202108011.htm
    [16]
    CAI Q R. Cause analysis of traffic accidents on urban roads based on an improved association rule mining algorithm[J]. IEEE Access, 2020(8): 75607-75615.
    [17]
    苏芳, 袁勤. 城市公路交通事故关联规则分析[J]. 武汉理工大学学报: (信息与管理工程版), 2020, 42(4): 313-318, 331. https://www.cnki.com.cn/Article/CJFDTOTAL-WHQC202004005.htm

    SU F, YUAN Q. Analysis of association rules of urban road traffic accidents[J]. Journal of Wuhan University of Technology(IAME), 2020, 42(4): 313-318, 331. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHQC202004005.htm
    [18]
    WU J W, LIAO H. Weather, travel mode choice, and impacts on subway ridership in Beijing[J]. Transportation Research Part A: Policy & Practice 2020(135): 264-279.
    [19]
    MARGARETH G, HURTUBIA R, ORTUZAR J D. The role of habit and the built environment in the willingness to commute by bicycle[J]. Travel Behaviour and Society, 2020(20): 62-73.
    [20]
    张昕明, 弓棣, 谢秉磊, 等. 计划行为理论视角下基于出行行为的公交防疫策略影响效果研究[J]. 交通信息与安全, 2021, 39(6): 117-125. doi: 10.3963/j.jssn.1674-4861.2021.06.014

    ZHANG X M, GONG D, XIE B L, et al. A study of the effectiveness of epidemic prevention policies on public transit usage based on the theory of planned behaviors[J]. Journal of Transport Information and Safety, 2021, 39(6): 117-125. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.06.014
    [21]
    黎新华, 李俊辉, 黎景壮. 基于改进DTW-AGNES的网约车需求量时间序列聚类研究[J]. 重庆交通大学学报(自然科学版), 2019, 38(8): 13-19. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201908003.htm

    LI X H, LI J H, LI J Z. Clustering research on time series of online car-hailing demand based on the improved DTW_AGNES[J]. Journal of Chongqing Jiaotong University(Natural Sciences), 2019, 38(8): 13-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201908003.htm
    [22]
    胡松, 翁剑成, 周伟, 等. 基于扩展计划行为理论的公共交通出行依赖性影响[J]. 吉林大学学报(工学版), 2022, 52 (5): 1037-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202205008.htm

    HU S, WENG J C, ZHOU W, et al. Influence of travelers' dependence on public transportation based on extended theory of planning behavior[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(5): 1037-1044. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202205008.htm
    [23]
    徐宏, 陈焰, 支艳利, 等. 基于Apriori改进算法的旅游个性化推荐[J]. 微型电脑应用, 2018, 34(1): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-WXDY201801022.htm

    XU H, CHEN Y, ZHI Y L, et al. Personalized travel search based on improved Apriori agorithm[J]. Microcomputer Applications, 2018, 34(1): 74-79(. in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WXDY201801022.htm
    [24]
    DAI J, LIU Z, LI R. Improving the subway attraction for the post-COVID-19 era: The role of fare-free public transport policy[J]. Transport Policy, 2021, 103(490): 21-30.
    [25]
    吕楠, 滕爱, 张彬. "双碳"背景下深圳市公交票价优惠政策优化思路研究[J]. 城市公共交通, 2022(10): 43-48, 52. https://www.cnki.com.cn/Article/CJFDTOTAL-CSGJ202210015.htm

    LYU N, TENG A, ZHANG B. Research on bus discounting policy with purposes of carbon neutrality and peak emission: Case study in Shenzhen[J]. Urban Public Transport, 2022(10): 43-48, 52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSGJ202210015.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(6)

    Article Metrics

    Article views (412) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return