Citation: | LIU Chao, LUO Ruyi, LIU Chunqing, LYU Nengchao. A Method for Developing Continuous Vehicle Trajectories through Target Association and Trajectory Splicing Based on Video Data from Multiple Roadside Cameras[J]. Journal of Transport Information and Safety, 2023, 41(3): 80-91. doi: 10.3963/j.jssn.1674-4861.2023.03.009 |
[1] |
吕伟, 黄广琛, 汪京辉. 基于元胞自动机的高速公路瓶颈交通演化仿真[J]. 交通运输系统工程与信息, 2022, 22(3): 293-302. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202203033.htm
LYU W, HUANG G S, WANG J H. Simulation of highway traffic bottleneck via cellular automata[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(3): 293-302. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202203033.htm
|
[2] |
SUN D H., CHEN D, ZHAO M., et al. Linear stability and nonlinear analyses of traffic waves for the general nonlinear car-following model with multi-time delays[J]. Physica A: Statistical Mechanics and its Applications. 2018, 501: 293-307. doi: 10.1016/j.physa.2018.02.179
|
[3] |
朱顺应, 蒋若曦, 王红, 等. 机动车交通冲突技术研究综述[J]. 中国公路学报, 2020, 33(2): 15-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202002002.htm
ZHU S Y, JIANG R X, WANG H, et al. Review of research on traffic conflict techniques[J]. China Journal of Highway and Transport, 2020, 33(2): 15-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202002002.htm
|
[4] |
WU K, JOVANIS P. Crashes and crash-surrogate events: Exploratory modeling with naturalistic driving data[J]. Accident Analysis & Prevention, 2012(45): 507-516.
|
[5] |
BAGDADI O. Assessing safety critical braking events in naturalistic driving studies[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2013(16): 117-126.
|
[6] |
PARSA A B, TAGHIPOUR H, DERRIBLE S, et al. Real-time accident detection: Coping with imbalanced data[J]. Accident Analysis & Prevention, 2019(129): 202-210.
|
[7] |
吕能超, 彭凌枫, 吴超仲, 等. 区分冲突类型的路段实时碰撞风险预测模型[J]. 中国公路学报, 2022, 35(1): 93-108.
LYU N C, PENG L F, WU C Z, et al. Real-time crash-risk prediction model that distinguishes collision types[J]. China Journal of Highway and Transport, 2022, 35(1): 93-108. (in Chinese)
|
[8] |
关丽敏, 张倩, 楚庆玲, 等. 基于改进ICP算法的路侧双激光雷达数据融合[J]. 激光杂志, 2021, 42(9): 38-44. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202109008.htm
GUAN L M, ZHANG Q, CHU Q L, et al. Roadside dual lidar data fusion based on improved ICP algorithm[J]. Laser Journal, 2021, 42(9): 38-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202109008.htm
|
[9] |
薛清文, 蒋愚明, 陆键. 基于轨迹数据的危险驾驶行为识别方法[J]. 中国公路学报, 2020, 33(6): 84-94. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202006009.htm
XUE Q W, JIANG Y M, LU J. Risky driving behavior recognition based on trajectory data[J]. China Journal of Highway and Transport, 2020, 33(6): 84-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202006009.htm
|
[10] |
王俊骅, 宋昊, 景强, 等. 基于毫米波雷达组群的全域车辆轨迹检测技术方法[J]. 中国公路学报, 2022, 35(12): 181-192. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202212015.htm
WANG J H, SONG H, JING Q, et al. Road-range tracking of vehicle trajectories based on millimeter-wave radar[J]. China Journal of Highway and Transport, 2022, 35(12): 181-192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202212015.htm
|
[11] |
李熙莹, 梁靖茹, 郝腾龙. 考虑连锁冲突的城市公交车行车风险量化分析方法[J]. 交通信息与安全, 2022, 40(3): 19-29. doi: 10.3963/j.jssn.1674-4861.2022.03.003
LI X Y, LIANG J R, HAO T L. A method for quantitatively analyzing risks associated with the operation of urban buses considering chained conflicts[J]. Journal of Transport Information and Safety. 2022, 40(3): 19-29. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.03.003
|
[12] |
WANG C, XU C C, DAI Y L. A crash prediction method based on bivariate extreme value theory and video-based vehicle trajectory data[J]. Accident Analysis & Prevention, 2019(123): 365-373.
|
[13] |
房锐, 张琪, 胡澄宇, 等. 基于风险矩阵的干线公路弯道路段交通冲突风险评估模型[J]. 交通运输系统工程与信息, 2021, 21(2): 166-172. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202102026.htm
FANG R, ZHANG Q, HU C G, et al. Risk assessment model based on risk matrix for traffic conflict on arterial highway bend section[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(2): 166-172. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202102026.htm
|
[14] |
KRAJEWSKI R, BOCK J, KLOEKER L, et al. The HighD dataset: A drone dataset of naturalistic vehicle trajectories on german highways for validation of highly automated driving systems[C]. 21st International Conference on Intelligent Transportation Systems(ITSC), Maui, HI, USA: IEEE, 2018.
|
[15] |
冯汝怡, 李志斌, 吴启范, 等. 航拍视频车辆检测目标关联与时空轨迹匹配[J]. 交通信息与安全, 2021, 39(2): 61-69, 77. doi: 10.3963/j.jssn.1674-4861.2021.02.008
FENG R Y, LI Z B, WU Q F, et al. Association of vehicle object detection and the time-space trajectory matching from aerial videos[J]. Journal of Transport Information and Safety, 2021, 39(2): 61-69, 77. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.02.008
|
[16] |
FHWA, Department of Transportation, America. NGSIM: Next generation simulation[EB/OL]. (2007-5-5)[2015-08-16].
|
[17] |
李枫. 高速公路视频监控系统的应用及构建[J]. 电子技术与软件工程, 2023, 243(1): 159-164. https://www.cnki.com.cn/Article/CJFDTOTAL-DZRU202301033.htm
LI F. Application and construction of expressway video monitoring system[J]. Electronic Technology and Software Engineering, 2023, 243(1): 159-164. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZRU202301033.htm
|
[18] |
李子腾, 施绍武, 张康. 大数据+AI收费稽核系统[J]. 中国交通信息化, 2022, 269(5): 95-98. https://www.cnki.com.cn/Article/CJFDTOTAL-JTXC202205011.htm
LI Z T, SHI S W, ZHANG K. Big data + AI fee audit system[J]. China's Transportation Informatization, 2022, 269 (5): 95-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTXC202205011.htm
|
[19] |
李君羡, 童文聪, 沈宙彪, 等. 基于结构化视频数据的交叉口评估及问题自动化诊断[J]. 同济大学学报(自然科学版), 2020, 48(8): 1149-1160. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202008008.htm
LI J X, TONG W C, SHEN Z B, et al. Intersection evaluation and automatic problem diagnosis based on structured video data[J]. Journal of Tongji University (Natural Science), 2020, 48(8): 1149-1160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202008008.htm
|
[20] |
REDMON J, FARHADI A. YOLO9000: Better, faster, Stronger. [C]. 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, HI, USA: IEEE, 2017.
|
[21] |
李建国, 张睿, 王凯, 等. 基于匈牙利匹配和卡尔曼滤波的动态多目标跟踪[J]. 汽车实用技术, 2022, 47(1): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-SXQC202201011.htm
LI J G, ZHANG R, WANG K, ET AL. Multi-object tracking algorithm based on Hungarian matching and Kalman filtering[J]. Automobile Applied Technology, 2022, 47(1): 45-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXQC202201011.htm
|
[22] |
李月峰, 周书仁. 在线多目标视频跟踪算法综述[J]. 计算技术与自动化, 2018, 37(1): 73-82. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJH201801016.htm
LI Y F, ZHOU S R. Survey of online multi-object video tracking algorithms[J]. Computing Technology and Automation, 2018, 37(01): 73-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJH201801016.htm
|
[23] |
戴雯惠, 樊凌. 基于改进透视变换的畸变图像校正方法研究[J]. 信息通信, 2020, 215(11): 63-65. https://www.cnki.com.cn/Article/CJFDTOTAL-HBYD202011021.htm
DAI W H, FAN L. Research on distorted image correction method based on improved perspective transform[J], Information Communication, 2020, 215(11): 63-65. https://www.cnki.com.cn/Article/CJFDTOTAL-HBYD202011021.htm
|
[24] |
MUTHALAGU R, BOLIMERA A, KALAICHELVI V. Lane detection technique based on perspective transformation and histogram analysis for self-driving cars[J]. Computers and Electrical Engineering, 2020, 85(1): 106653.
|
[25] |
王德咏, 葛修润, 罗先启, 等. 基于改进DLT算法的数字近景摄影测量[J]. 上海交通大学学报, 2011, 45(增刊1): 16-20, 26. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT2011S1005.htm
WANG D Y, GE X R, LUO X Q, et al. Study on digital close-range photogrammetry based on improved DLT algorithm[J]. Journal of Shanghai Jiao Tong University 2011, 45 (S1): 16-20, 26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT2011S1005.htm
|
[26] |
YUN S, HAN D, CHUN S, et al. CutMix: regularization strategy to train strong classifiers with localizable features[C]. IEEE/CVF International Conference on Computer Vision(ICCV), Seoul, South Korea: IEEE, 2019.
|
[27] |
WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[C]. The European Conference on Computer Vision(ECCV)Munich, Germany: IEEE, 2018.
|
[28] |
彭丁聪. 卡尔曼滤波的基本原理及应用[J]. 软件导刊, 2009, 8(11): 32-34. https://www.cnki.com.cn/Article/CJFDTOTAL-RJDK200911011.htm
PENG D C. Basic principle and application of kalman filter[J]. Software Guide, 2009, 8(11): 32-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RJDK200911011.htm
|