Citation: | HUI Bing, LI Yuanjian. A Detection Method for Pavement Cracks Based on an Improved U-Shaped Network[J]. Journal of Transport Information and Safety, 2023, 41(1): 105-114. doi: 10.3963/j.jssn.1674-4861.2023.01.011 |
[1] |
马建, 赵祥模, 贺拴海, 等. 路面检测技术综述[J]. 交通运输工程学报, 2017, 17(5): 121-137. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201705012.htm
MA J, ZHAO X M, HE S H, et al. Review of pavement detection technology[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 121-137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201705012.htm
|
[2] |
AMHAZ R, CHAMBON S, IDIER J, et al. Automatic crack detection on 2D pavement images: An algorithm based on minimal path selection[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(10): 2718-2729. doi: 10.1109/TITS.2015.2477675
|
[3] |
PENG L, CHAO W, LI S, et al. Research on crack detection method of airport runway based on Twice-Threshold segmentation[C]. 5th International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC), Qinhuangdao, China: IEEE, 2015.
|
[4] |
王兴建, 秦国锋, 赵慧丽. 基于多级去噪模型的路面裂缝检测方法[J]. 计算机应用, 2010, 30(6): 1606-1609, 1612. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201006051.htm
WANG X J, QIB G F, ZHAO H L. Pavement crack detection method based on multilevel denoising model[J]. Journal of Computer Applications, 2010, 30(6): 1606-1609, 1612. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201006051.htm
|
[5] |
张志华, 邓砚学, 张新秀. 基于改进SegNet的沥青路面病害提取与分类方法[J]. 交通信息与安全, 2022, 40(3): 127-135. doi: 10.3963/j.jssn.1674-4861.2022.03.013
ZHANG Z H, DENG Y X, ZHANG X X. A method for detecting and differentiating asphalt pavement distress based on an improved SegNet algorithm[J]. Journal of Transport Information and Safety, 2022, 40(3): 127-135. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.03.013
|
[6] |
ZHAO H, QIN G, WANG X. Improvement of canny algorithm based on pavement edge detection[C]. 3rd International Congress on Image and Signal Processing, Yantai, China: IEEE, 2010.
|
[7] |
SALMAN M, MATHAVAN S, KAMAL K, et al. Pavement crack detection using the Gabor filter[C]. 16th international IEEE conference on intelligent transportation systems(ITSC 2013), New York, America: IEEE, 2013
|
[8] |
章天杰, 韩海航. 基于残差神经网络的沥青路面裂缝识别分类研究[J]. 公路, 2021, 66(10): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202110004.htm
ZHANG T J, HAN H H. Research on identification and classification of asphalt pavement cracks using residual neural network[J]. Highway, 2021, 66(10): 24-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202110004.htm
|
[9] |
沙爱民, 童峥, 高杰. 基于卷积神经网络的路表病害识别与测量[J]. 中国公路学报, 2018, 31(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201801002.htm
SHA A M, TONG Z, GAO J. Recognition and measurement of pavement disasters based on convolutional neural networks[J]. China Journal of Highway and Transport, 2018, 31 (1): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201801002.htm
|
[10] |
孙朝云, 裴莉莉, 李伟, 等. 基于改进Faster R-CNN的路面灌封裂缝检测方法[J]. 华南理工大学学报(自然科学版), 2020, 48(2): 84-93.
SUN Z Y, PEI L L, LI W, et al. Pavement potting crack detection method based on improved Faster R-CNN[J]. Journal of South China University of Technology(Natural Science Edition), 2020, 48(2): 84-93. (in Chinese)
|
[11] |
晏班夫, 徐观亚, 栾健, 等. 基于Faster R-CNN与形态法的路面病害识别[J]. 中国公路学报, 2021, 34(9): 181-193. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202109016.htm
YAN B F, XU G Y, LUAN J, et al. Pavmenet distress detection based on Faster R-CNN and morphological operations[J]. China Journal of Highway and Transport, 2021, 34 (9): 181-193. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202109016.htm
|
[12] |
RONNEBERGER O, FISCHER P, BROX T, et al. U-Net: Convolutional networks for biomedical image segmentation[C]. Medical Image Computing and Computer Assisted Intervention, Berlin, Germany: Springer, 2015.
|
[13] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J/OL](2015-4-10)[2023-2-27].
|
[14] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[J]. IEEE Transcations on Pattern Analysis and Machine Intelligence. 2017, 42(8): 7132-7141.
|
[15] |
杨炜, 黄立红, 赵祥模, 等. 基于FRRN注意力监督的沥青路面积水区域分割[J]. 交通运输工程学报, 2021, 21(5): 309-322. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202105029.htm
YANG W, HUANG L H, ZHAO X M, et al. Puddle area segmentation of asphalt pavements based on FRRN attention and supervision[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 309-322. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202105029.htm
|
[16] |
林禹, 赵泉华, 李玉. 1种基于深度传递迁移学习的遥感影像分类方法[J]. 地球信息科学学报, 2022, 24(3): 495-507.
LIN Y, ZHAO Q H, LI Y. A remote sensing image classification method based on deep transitive transfer learning[J]. Journal of Geo-information Science, 2022, 24(3): 495-507. (in Chinese)
|
[17] |
YANG F, ZHANG L, YU S, et al. Feature pyramid and hierarchical boosting network for pavement crack detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(4): 1525-1535.
|
[18] |
WANG X, ZHANG R, KONG T, et al. SOLOv2: Dynamic and fast instance segmentation[J]. Advances in Neural Information Processing Systems, 2020(33): 17721-17732.
|
[19] |
HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]. The IEEE International Conference on Computer Vision, Venice, Italy: ICCV, 2017.
|
[20] |
CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]. The European Conference on Computer Vision, Munich, Germany: ECCV, 2018.
|
[21] |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.
|
[22] |
张继凯, 赵君, 张然, 等. 深度学习的图像实例分割方法综述[J]. 小型微型计算机系统, 2021, 42(1): 161-171.
ZHANG J K, ZHAO J, ZHANG R, et al. Survey of image instance segmentation methods using deep learning[J]. Journal of Chinese Computer Systems, 2021, 42(1): 161-171. (in Chinese)
|
[23] |
吴忧, 袁雪. 基于改进SOLOv2的复杂场景下智能机器人巡检识别算法[J]. 北京交通大学学报, 2022, 46(5): 95-106.
WU Y, YUAN X. Inspection and identification algorithm based on improved SOLOv2 of intelligent robot in complex environment[J]. Journal of Beijing Jiaotong University, 2022, 46(5): 95-106. (in Chinese)
|
[24] |
邱实, 陈斌, 胡文博, 等. 基于深度学习和虚拟模型的路面全域伤损状态自动化感知[J/OL]. 中国公路学报: (2022-11)[2023-02-25].
QIU S, CHEN B, HU W B, et al. Automated pavement-wide injury state sensing based on deep learning and virtual models[J/OL]. China Journal of Highway and Transport, (2022-11)[2023-02-25].
|