Volume 41 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
HUI Bing, LI Yuanjian. A Detection Method for Pavement Cracks Based on an Improved U-Shaped Network[J]. Journal of Transport Information and Safety, 2023, 41(1): 105-114. doi: 10.3963/j.jssn.1674-4861.2023.01.011
Citation: HUI Bing, LI Yuanjian. A Detection Method for Pavement Cracks Based on an Improved U-Shaped Network[J]. Journal of Transport Information and Safety, 2023, 41(1): 105-114. doi: 10.3963/j.jssn.1674-4861.2023.01.011

A Detection Method for Pavement Cracks Based on an Improved U-Shaped Network

doi: 10.3963/j.jssn.1674-4861.2023.01.011
  • Received Date: 2022-03-06
    Available Online: 2023-05-13
  • Due to the traditional crack segmentation algorithm is difficult to identify narrow cracks and the segmentation edge is not accurate. This paper proposes a pavement crack detection method based on improved U-Shaped Network (Unet) to increase detection accuracy. Since traditional Unet is a type of"shallow"neural network, it is not good for extracting complex crack features. The Oxford University Visual Geometry Group Network (VGG16) is therefore used for feature extraction, in order to improve the accuracy of crack feature extraction. In addition, the fusion of high- and low-order features generate several useless features. The compression and excitation unit (SE block) is added to the decoding part of the model to develop a crack attention unit which allows the network to focus on the crack features under different channels. Moreover, an improved Unet is proposed by combining SE block with VGG16 (SE-VUnet). In addition, a transfer learning method is used to transfer the pre-trained VGG16 network weight on ImageNet for crack detection. By selecting the Crack500 data set and using the camera to collect images to develop1600 pavement crack data sets, the SE-VUnet model is trained again to obtain the crack segmentation results. The weighted harmonic mean F1 of Precision and Recall and Jaccard similarity coefficient are used as quantitative evaluation indicators. The segmentation effect and real-time performance of SE-VUnet are compared with Unet and three other representative models. Study results show that the comprehensive F1 and the Jaccard coefficient of SE-VUnet model is 0.840 3 and 0.722 1, which is 1.04% and 1.51% higher than Unet respectively, as well as other three comparison models. The time for the SE-VUnet to screen a single-frame image is 89 ms, which is only 5ms slower than the Unet but with a significant improvement over the crack segmentation and detection process.

     

  • loading
  • [1]
    马建, 赵祥模, 贺拴海, 等. 路面检测技术综述[J]. 交通运输工程学报, 2017, 17(5): 121-137. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201705012.htm

    MA J, ZHAO X M, HE S H, et al. Review of pavement detection technology[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 121-137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201705012.htm
    [2]
    AMHAZ R, CHAMBON S, IDIER J, et al. Automatic crack detection on 2D pavement images: An algorithm based on minimal path selection[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(10): 2718-2729. doi: 10.1109/TITS.2015.2477675
    [3]
    PENG L, CHAO W, LI S, et al. Research on crack detection method of airport runway based on Twice-Threshold segmentation[C]. 5th International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC), Qinhuangdao, China: IEEE, 2015.
    [4]
    王兴建, 秦国锋, 赵慧丽. 基于多级去噪模型的路面裂缝检测方法[J]. 计算机应用, 2010, 30(6): 1606-1609, 1612. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201006051.htm

    WANG X J, QIB G F, ZHAO H L. Pavement crack detection method based on multilevel denoising model[J]. Journal of Computer Applications, 2010, 30(6): 1606-1609, 1612. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201006051.htm
    [5]
    张志华, 邓砚学, 张新秀. 基于改进SegNet的沥青路面病害提取与分类方法[J]. 交通信息与安全, 2022, 40(3): 127-135. doi: 10.3963/j.jssn.1674-4861.2022.03.013

    ZHANG Z H, DENG Y X, ZHANG X X. A method for detecting and differentiating asphalt pavement distress based on an improved SegNet algorithm[J]. Journal of Transport Information and Safety, 2022, 40(3): 127-135. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.03.013
    [6]
    ZHAO H, QIN G, WANG X. Improvement of canny algorithm based on pavement edge detection[C]. 3rd International Congress on Image and Signal Processing, Yantai, China: IEEE, 2010.
    [7]
    SALMAN M, MATHAVAN S, KAMAL K, et al. Pavement crack detection using the Gabor filter[C]. 16th international IEEE conference on intelligent transportation systems(ITSC 2013), New York, America: IEEE, 2013
    [8]
    章天杰, 韩海航. 基于残差神经网络的沥青路面裂缝识别分类研究[J]. 公路, 2021, 66(10): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202110004.htm

    ZHANG T J, HAN H H. Research on identification and classification of asphalt pavement cracks using residual neural network[J]. Highway, 2021, 66(10): 24-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202110004.htm
    [9]
    沙爱民, 童峥, 高杰. 基于卷积神经网络的路表病害识别与测量[J]. 中国公路学报, 2018, 31(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201801002.htm

    SHA A M, TONG Z, GAO J. Recognition and measurement of pavement disasters based on convolutional neural networks[J]. China Journal of Highway and Transport, 2018, 31 (1): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201801002.htm
    [10]
    孙朝云, 裴莉莉, 李伟, 等. 基于改进Faster R-CNN的路面灌封裂缝检测方法[J]. 华南理工大学学报(自然科学版), 2020, 48(2): 84-93.

    SUN Z Y, PEI L L, LI W, et al. Pavement potting crack detection method based on improved Faster R-CNN[J]. Journal of South China University of Technology(Natural Science Edition), 2020, 48(2): 84-93. (in Chinese)
    [11]
    晏班夫, 徐观亚, 栾健, 等. 基于Faster R-CNN与形态法的路面病害识别[J]. 中国公路学报, 2021, 34(9): 181-193. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202109016.htm

    YAN B F, XU G Y, LUAN J, et al. Pavmenet distress detection based on Faster R-CNN and morphological operations[J]. China Journal of Highway and Transport, 2021, 34 (9): 181-193. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202109016.htm
    [12]
    RONNEBERGER O, FISCHER P, BROX T, et al. U-Net: Convolutional networks for biomedical image segmentation[C]. Medical Image Computing and Computer Assisted Intervention, Berlin, Germany: Springer, 2015.
    [13]
    SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J/OL](2015-4-10)[2023-2-27]. https://doi.org/10.48550/arXiv.1409.1556.
    [14]
    HU J, SHEN L, SUN G. Squeeze-and-excitation networks[J]. IEEE Transcations on Pattern Analysis and Machine Intelligence. 2017, 42(8): 7132-7141.
    [15]
    杨炜, 黄立红, 赵祥模, 等. 基于FRRN注意力监督的沥青路面积水区域分割[J]. 交通运输工程学报, 2021, 21(5): 309-322. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202105029.htm

    YANG W, HUANG L H, ZHAO X M, et al. Puddle area segmentation of asphalt pavements based on FRRN attention and supervision[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 309-322. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202105029.htm
    [16]
    林禹, 赵泉华, 李玉. 1种基于深度传递迁移学习的遥感影像分类方法[J]. 地球信息科学学报, 2022, 24(3): 495-507.

    LIN Y, ZHAO Q H, LI Y. A remote sensing image classification method based on deep transitive transfer learning[J]. Journal of Geo-information Science, 2022, 24(3): 495-507. (in Chinese)
    [17]
    YANG F, ZHANG L, YU S, et al. Feature pyramid and hierarchical boosting network for pavement crack detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(4): 1525-1535.
    [18]
    WANG X, ZHANG R, KONG T, et al. SOLOv2: Dynamic and fast instance segmentation[J]. Advances in Neural Information Processing Systems, 2020(33): 17721-17732.
    [19]
    HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]. The IEEE International Conference on Computer Vision, Venice, Italy: ICCV, 2017.
    [20]
    CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]. The European Conference on Computer Vision, Munich, Germany: ECCV, 2018.
    [21]
    REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.
    [22]
    张继凯, 赵君, 张然, 等. 深度学习的图像实例分割方法综述[J]. 小型微型计算机系统, 2021, 42(1): 161-171.

    ZHANG J K, ZHAO J, ZHANG R, et al. Survey of image instance segmentation methods using deep learning[J]. Journal of Chinese Computer Systems, 2021, 42(1): 161-171. (in Chinese)
    [23]
    吴忧, 袁雪. 基于改进SOLOv2的复杂场景下智能机器人巡检识别算法[J]. 北京交通大学学报, 2022, 46(5): 95-106.

    WU Y, YUAN X. Inspection and identification algorithm based on improved SOLOv2 of intelligent robot in complex environment[J]. Journal of Beijing Jiaotong University, 2022, 46(5): 95-106. (in Chinese)
    [24]
    邱实, 陈斌, 胡文博, 等. 基于深度学习和虚拟模型的路面全域伤损状态自动化感知[J/OL]. 中国公路学报: (2022-11)[2023-02-25]. http://kns.cnki.net/kcms/detail/61.1313.U.20221124.0917.004.html.

    QIU S, CHEN B, HU W B, et al. Automated pavement-wide injury state sensing based on deep learning and virtual models[J/OL]. China Journal of Highway and Transport, (2022-11)[2023-02-25]. http://kns.cnki.net/kcms/detail/61.1313.U.20221124.0917.004.html. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article views (803) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return