Citation: | MA Haowei, ZHANG Di, LI Yuli, FAN Liang. A Ship Detection Algorithm for Infrared Images under Hazy Environment based on an Improved YOLOv5 Algorithm[J]. Journal of Transport Information and Safety, 2023, 41(1): 95-104. doi: 10.3963/j.jssn.1674-4861.2023.01.010 |
[1] |
王岩, 孙寿保, 徐峰, 等. 提升尹公洲段航道通过能力的探讨[J]. 水运工程, 2020(12): 161-165, 190.
WANG Y, SUN S B, XU F, et al. Discussion on improving passage capacity of Yingongzhou channel[J]. Port & Waterway Engineering, 2020(12): 161-165, 190. (in Chinese)
|
[2] |
郝姝馨, 郝增周, 黄海清, 等. 基于Himawari-8数据的夜间海雾识别[J]. 海洋学报, 2021, 43(11): 166-180.
HAO S X, HAO Z Z, HUANG H Q, et al. Nighttime sea fog recognition based on Himawari-8 data[J]. Acta OceanologicaSinca, 2021, 43(11): 166-180. (in Chinese)
|
[3] |
李云红, 刘宇栋, 苏雪平, 等. 红外与可见光图像配准技术研究综述[J]. 红外技术, 2022, 44(7): 641-651. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS202207001.htm
LI Y H, LIU Y D, SU X P, et al. Review of infrared and visible image registration[J]. Infrared Technology, 2022, 44(7): 641-651. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS202207001.htm
|
[4] |
SHU Q, WU C, ZHONG Q, et al. Alternating minimization algorithm for hybrid regularized variational image dehazing[J]. Optik, 2019(185): 943-956.
|
[5] |
ZHANG J, FENG F, SONG W. A compensation textures dehazing method for water alike area[J]. The Journal of Supercomputing, 2021, 77(4): 3555-3570. doi: 10.1007/s11227-020-03406-8
|
[6] |
MA Z, WEN J, ZHANG C, et al. An effective fusion defogging approach for single sea fog image[J]. Neurocomputing, 2016(173): 1257-1267.
|
[7] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbia, USA: IEEE, 2014.
|
[8] |
车凯, 向郑涛, 陈宇峰, 等. 基于改进Fast R-CNN的红外图像行人检测研究[J]. 红外技术, 2018, 40(6): 578-584. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201806010.htm
CHE K, XIANG Z T, CHEN Y F, et al. Research on infrared image pedestrian detection based on improved Fast R-CNN[J]. Infrared Technology, 2018, 40(6): 578-584. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201806010.htm
|
[9] |
顾燕, 李臻, 杨锋, 等. 基于改进Faster R-CNN的复杂背景红外车辆检测算法[J]. 激光与红外, 2022, 52(4): 614-619. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202204022.htm
GU Y, LI Z, YANG F, et al. Infrared vehicle detection algorithm with complex background based on improved Fast R-CNN[J]. Laser & Infrared, 2022, 52(4): 614-619. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202204022.htm
|
[10] |
CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]. 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA: IEEE, 2018.
|
[11] |
ZHANG C, XIONG B, KUANG G. Ship detection and recognition in optical remote sensing images based on scale enhancement rotating Cascade R-CNN networks[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium: IEEE, 2021.
|
[12] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]. 2016 IEEE European Conference on Computer Vision, Amsterdam: IEEE, 2016.
|
[13] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA: IEEE, 2016.
|
[14] |
ZOU Y, ZHAO L, QIN S, et al. Ship target detection and identification based on SSD_MobilenetV2[C]. 2020 IEEE Information Technology and Mechatronics Engineering Conference, Changsha, China: IEEE, 2020.
|
[15] |
CHANG Y L, ANAGAW A, CHANG L, et al. Ship detection based on YOLOv2 for SAR imagery[J]. Remote Sensing, 2019, 11(7): 786-800.
|
[16] |
陈信强, 郑金彪, 凌峻, 等. 基于异步交互聚合网络的港船作业区域人员异常行为识别[J]. 交通信息与安全, 2022, 40 (2): 22-29. doi: 10.3963/j.jssn.1674-4861.2022.02.003
CHEN X Q, ZHENG J B, LING J, et al. Detecting abnormal behaviors of workers at ship working fields via asynchronous interaction aggregation network[J]. Journal of Transport Information and Safety, 2022, 40(2): 22-29. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.02.003
|
[17] |
LIU R W, YUAN W, CHEN X, et al. An enhanced CNN-enabled learning method for promoting ship detection in maritime surveillance system[J]. Ocean Engineering, 2021, (235): 109435.
|
[18] |
LIU W, REN G, YU R, et al. Image-adaptive YOLO for object detection in adverse weather conditions[C]. The AAAI Conference onArtificial Intelligence, Beijing, China: AAAI, 2022.
|
[19] |
LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]. 2021 IEEE International Conference on Computer Vision, Montreal, Canada: IEEE, 2021.
|
[20] |
HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]. 2021 IEEE Conference on Computer Vision and Pattern Recognition, Nashville, USA: IEEE, 2021.
|
[21] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]. 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA: IEEE, 2018.
|
[22] |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]. 2018 IEEE European Conference on Computer Vision, Munich, Germany: IEEE, 2018.
|
[23] |
PARK J, WOO S, LEE J Y, et al. BAM: bottleneck attention module[C]. 2018 British Machine Vision Conference, Newcastle, UK: IAPR, 2018.
|
[24] |
Infiray. Infiray infrared open source offshore vessel dataset[R/OL]. (2021-12)[2022-10-30].
|
[25] |
CHEN X, LING J, WANG S, et al. Ship detection from coastal surveillance videos via an ensemble Canny-Gaussian-morphology framework[J]. The Journal of Navigation, 2021, 74 (6): 1252-1266.
|
[26] |
CHEN Z, CHEN D, ZHANG Y, et al. Deep learning for autonomous ship-oriented small ship detection[J]. Safety Science, 2020, (130): 104812.
|