Volume 40 Issue 5
Nov.  2022
Turn off MathJax
Article Contents
ZHOU Yong, ZHANG Bingzhen, ZHANG Xiaoyong, LIU Yuming. A Detection Method for Abandoned Materials on Road Surface Based on an Improved YOLO and Background Differencing Algorithm[J]. Journal of Transport Information and Safety, 2022, 40(5): 112-119. doi: 10.3963/j.jssn.1674-4861.2022.05.012
Citation: ZHOU Yong, ZHANG Bingzhen, ZHANG Xiaoyong, LIU Yuming. A Detection Method for Abandoned Materials on Road Surface Based on an Improved YOLO and Background Differencing Algorithm[J]. Journal of Transport Information and Safety, 2022, 40(5): 112-119. doi: 10.3963/j.jssn.1674-4861.2022.05.012

A Detection Method for Abandoned Materials on Road Surface Based on an Improved YOLO and Background Differencing Algorithm

doi: 10.3963/j.jssn.1674-4861.2022.05.012
  • Received Date: 2022-03-02
    Available Online: 2022-12-05
  • Due to the problems such as low detection accuracy, limited types of materials that can be detected, and slow speed of detection algorithms for abandoned materials, a detection algorithm combining target detection based on deep learning and traditional image processing is proposed. The structure of the YOLOv5s detection algorithm is modified, in order to have a capacity of real-time detection. The downsampling module in YOLO is optimized using convolution; the original feature extraction network is replaced with a Ghost network to reduce the computational burden, and the anchor frame is designed to match the dataset according to the characteristics of the detected objects to improve the detection accuracy. The optimized YOLO algorithm is used to detect vehicles and pedestrians as traffic participants in the road scenes and the region of interest is set based on the detection results. By detecting foreground targets in the region of interest with a background differencing algorithm, and calculating the intersection and merger ratio between the foreground target and the detection results from the YOLO algorithm, the detection of road abandoned object can be completed after excluding the detected traffic participants. In the experiments of target detection, the improved YOLO algorithm has a detection speed of 20.67 ms for each frame without any drop in the detection accuracy, which is 16.42% faster than that of the original YOLO detection algorithm. Experimental results indicate that the mean average precision (mAP) of the traditional mixed Gaussian model algorithm is 0.51, while the mAP of the detection algorithm using the improved YOLO and background differencing is 0.78. The detection accuracy of the algorithm improves by 52.9%. The improved algorithm can be applied to scenarios where there is no data or sample data is limited. The detection time required for each frame is only 24.4 ms when the proposed algorithm is installed on a Jetson Xavier NX computer, and therefore it can be used to carry out real-time detection of abandoned materials.

     

  • loading
  • [1]
    李杰, 曾叙砜, 李平, 等. 道路交通安全文献的知识可视化综述[J]. 交通信息与安全, 2020, 38(1): 13-19. doi: 10.3963/j.jssn.1674-4861.2020.01.002

    LI J, ZENG X F, LI P, et al. Visualization review of road traffic safety literature[J]. Journal of Transport Information and Safety, 2020, 38(1): 13-19. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2020.01.002
    [2]
    MCHUGH J M, KONRAD J, SALIGRAMA V, et al. Foreground-adaptive background subtraction[J]. IEEE Signal Processing Letters, 2009, 16(5): 390-393. doi: 10.1109/LSP.2009.2016447
    [3]
    SZWOCH G. Extraction of stable foreground image regions for unattended luggage detection[J]. Multimedia Tools and Applications, 2016, 75(2): 761-786. doi: 10.1007/s11042-014-2324-4
    [4]
    ZENG Y, LAN J, RAN B, et al. A novel abandoned object detection system based on three-dimensional image information[J]. Sensors, 2015, 15(3): 6885-6904. doi: 10.3390/s150306885
    [5]
    汪贵平, 马力旺, 郭璐, 等. 高速公路抛洒物事件图像检测算法[J]. 长安大学学报(自然科学版), 2017, 37(5): 81-88. doi: 10.3969/j.issn.1671-8879.2017.05.011

    WANG G P, MA L W, GUO L, et al. Image detection algorithm for incident of discarded things in highway[J]. Journal of Chang'an University(Natural Science Edition), 2017, 37(5): 81-88. (in Chinese) doi: 10.3969/j.issn.1671-8879.2017.05.011
    [6]
    杨杰超, 许江淳, 陆万荣, 等. 嵌入式高速公路异物侵限的检测与跟踪研究[J]. 自动化仪表, 2018, 39(12): 70-73. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYB201812017.htm

    YANG J C, XU J C, LU W R, et al. Study on embedded expressway clearance intrusion detection and tracking[J]. Process Automation Instrumentation, 2018, 39(12): 70-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYB201812017.htm
    [7]
    宁正, 牛宏侠, 张肇鑫. 基于改进混合高斯模型的铁轨异物入侵检测方法[J]. 传感器与微系统, 2021, 40(5): 146-149. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ202105041.htm

    NING Z, NIU H X, ZHANG Z X. Railway foreign body intrusion detection method based on improved mixed Gaussian model[J]. Transducer and Microsystem Technologies, 2021, 40(5): 146-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ202105041.htm
    [8]
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]. Conference on Computer Vision and Pattern Recognition, Las Vegas, USA: IEEE, 2016.
    [9]
    金瑶, 张锐, 尹东. 城市道路视频中小像素目标检测[J]. 光电工程, 2019, 46(9): 76-83. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201909009.htm

    JIN Y, ZHANG R, YIN D. Object detection for small pixel in urban roads videos[J]. Opto-Electronic Engineering, 2019, 46(9): 76-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201909009.htm
    [10]
    章悦, 张亮, 谢非, 等. 基于实例分割模型优化的道路抛洒物检测算法[J]. 计算机应用, 2021, 41(11): 3228-3233. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY202111021.htm

    ZHANG Y, ZHANG L, XIE F, et al. Road abandoned object detection algorithm based on optimized instance segmentation model[J]. Journal of Computer Applications, 2021, 41(11): 3228-3233. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY202111021.htm
    [11]
    周雯, 史天运, 李平, 等. 基于深度学习的动车组运行安全图像异物检测[J]. 交通信息与安全, 2019, 37(6): 48-55. doi: 10.3963/j.issn.1674-4861.2019.06.006

    ZHOU W, SHI T Y, LI P, et al. Foreign objects detection of safety image of EMU operation based on deep learning[J]. Journal of Transport Information and Safety, 2019, 37(6): 48-55. (in Chinese) doi: 10.3963/j.issn.1674-4861.2019.06.006
    [12]
    何文玉, 杨杰, 张天露. 基于深度学习的轨道异物入侵检测算法[J]. 计算机工程与设计, 2020, 41(12): 3376-3383. https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ202012046.htm

    HE W Y, YANG J, ZHANG T L. Orbital foreign object intrusion detection algorithm based on deep learning[J]. Computer Engineering and Design, 2020, 41(12): 3376-3383. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ202012046.htm
    [13]
    ZHUANG F, QI Z, DUAN K, et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2020, 109(1): 43-76.
    [14]
    SUNG F, YANG Y, ZHANG L, et al. Learning to compare: Relation network for few-shot learning[C]. Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA: IEEE, 2018.
    [15]
    ZHOU F, ZHAO H, NIE Z. Safety helmet detection based on YOLOv5[C]. 2021 IEEE International Conference on Power Electronics, Computer Applications(ICPECA), Shenyang, China: IEEE, 2021.
    [16]
    程健, 王东伟, 杨凌凯, 等. 一种改进的高斯混合模型煤矸石视频检测方法[J]. 中南大学学报(自然科学版), 2018, 49(1): 118-123. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201801016.htm

    CHENG J, WANG D W, YANG L K, et al. An improved Gaussian mixture model for coal gangue video detection[J]. Journal of Central South University(Science and Technology), 2018, 49(1): 118-123. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201801016.htm
    [17]
    郭保青, 杨柳旭, 史红梅, 等. 基于快速背景差分的高速铁路异物侵入检测算法术[J]. 仪器仪表学报, 2016, 37(6): 1371-1378.

    GUO B Q, YANG L X, SHI H M, et al. High-speed railway clearance intrusion detection algorithm with fast background subtraction[J]. Chinese Journal of Scientific Instrument, 2016, 37(6): 1371-1378. (in Chinese)
    [18]
    蔡念, 陈世文, 郭文婷, 等. 融合高斯混合模型和小波变换的运动目标检测[J]. 中国图象图形学报, 2011, 16(9): 1716-1721. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201109025.htm

    CAI N, CHEN S W, GUO W T, et al. Moving object detection using Gaussian mixture model and wavelet transform[J]. Journal of Image and Graphics, 2011, 16(9): 1716-1721. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201109025.htm
    [19]
    WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN[C]. Conference on Computer Vision and Pattern Recognition Workshops, Piscataway: IEEE, 2020.
    [20]
    HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9): 1904-1916.
    [21]
    HAN K, WANG Y, TIAN Q, et al. Ghostnet: More features from cheap operations[C]. Conference on Computer Vision and Pattern Recognition, Piscataway: IEEE, 2020.
    [22]
    LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft coco: Common objects in context[J]. Lecture Notes in Computer Science, 2014(8693): 740-755.
    [23]
    REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]. Conference on Computer Vision and Pattern Recognition, Honolulu: IEEE, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views (1733) PDF downloads(176) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return