Citation: | JIA Xingli, LI Shuangqing, YANG Hongzhi, CHEN Xingpeng. Prediction of the Duration of Freeway Traffic Incidents Based on an ATT-LSTM Model[J]. Journal of Transport Information and Safety, 2022, 40(5): 61-69. doi: 10.3963/j.jssn.1674-4861.2022.05.007 |
[1] |
姬杨蓓蓓, 张小宁, 孙立军. 交通事件持续时间预测方法综述[J]. 公路工程, 2008, 33(3): 72-79. doi: 10.3969/j.issn.1674-0610.2008.03.017
JIYANG B B, ZHANG X N, SUN L J. A review of the traffic incident duration prediction methods[J]. Highway Engineering, 2008, 33(3): 72-79. (in Chinese) doi: 10.3969/j.issn.1674-0610.2008.03.017
|
[2] |
许宏科, 赵威, 杨孟, 等. 基于改进BPNN的高速公路交通事故持续时间预测[J]. 华东交通大学学报, 2020, 37(5): 60-65. https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT202005009.htm
XU H K, ZHAO W, YANG M, et al. Prediction of expressway traffic accident duration based on the improved BPNN[J]. Journal of East China Jiaotong University, 2020, 37 (5): 60-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT202005009.htm
|
[3] |
LI R M, PEREIRA F C, BEN-AKIVA M E. Overview of traffic incident duration analysis and prediction[J]. European Transport Research Review, 2018, 10(2): 22-28. doi: 10.1186/s12544-018-0300-1
|
[4] |
姬杨蓓蓓. 交通事件持续时间预测方法研究[D]. 上海: 同济大学, 2008.
JIYANG B B. Research on prediction method of traffic incident duration[D]. Shanghai: Tongji University, 2008. (in Chinese)
|
[5] |
王文博, 陈红, 韦凌翔. 交通事故时间序列预测模型研究[J]. 中国安全科学学报, 2016, 26(6): 52-56. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201606010.htm
WANG W B, CHEN H, WEI L X. Research on traffic accident time series prediction model[J]. China Safety Science Journal, 2016, 26(6): 52-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201606010.htm
|
[6] |
夏正丰. 高速公路交通事故持续时间概率预测模型[J]. 公路与汽运, 2016(3): 52-55. doi: 10.3969/j.issn.1671-2668.2016.03.014
XIA Z F. Probability prediction model of highway traffic accident duration[J]. Highways and Automotive Applications, 2016(3): 52-55. (in Chinese) doi: 10.3969/j.issn.1671-2668.2016.03.014
|
[7] |
蓝岚, 路峰, 王军. 城市交通事故现场处理时间及影响因素分析[J]. 安全与环境学报, 2021, 21(3): 1173-1181. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202103037.htm
LAN L, LU F, WANG J. Analysis of the on-site processing time and the influential factors of the urban traffic accidents[J]. Journal of Safety and Environment, 2021, 21(3): 1173-1181. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202103037.htm
|
[8] |
LIN L, WANG Q, SADEK A W. A combined M5P tree and hazard-based duration model for predicting urban freeway traffic accident durations[J]. Accident Analysis & Prevention, 2016, 91(6): 114-126.
|
[9] |
GHOSB B, ASIF M T, DAUWELS J, et al. Dynamic prediction of the incident duration using adaptive feature set[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 20(11): 4019-4031.
|
[10] |
GUO J H, LIU Z, HUANG W, et al. Short-term traffic flow prediction using fuzzy information granulation approach under different time intervals[J]. IET Intelligent Transport Systems, 2018, 12(2): 143-150. doi: 10.1049/iet-its.2017.0144
|
[11] |
熊励, 陆悦, 杨淑芬. 城市道路交通拥堵预测及持续时间研究[J]. 公路, 2017, 62(11): 125-134. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201711026.htm
XIONG L, LU Y, YANG S F. Study on prediction and duration of urban road traffic congestion[J]. Highway, 2017, 62 (11): 125-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201711026.htm
|
[12] |
翁剑成, 付宇, 林鹏飞, 等. 基于梯度推进决策树的日维度交通指数预测模型[J]. 交通运输系统工程与信息, 2019, 19 (2): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201902012.htm
WENG J C, FU Y, LIN P F, et al. GBDT method based on prediction model of daily dimension traffic index[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(2): 80-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201902012.htm
|
[13] |
CONG H Z, CHEN C, LIN P S, et al. Traffic incident duration estimation based on a dual-learning bayesian network model[J]. Transportation Research Record Journal of the Transportation Research Board, 2018, 2672(45): 196-209
|
[14] |
何珂, 杨顺新, 郜勇刚. 基于PCA-RF组合模型的隧道交通事故持续时间预测[J]. 交通信息与安全, 2019, 37(5): 26-32. doi: 10.3963/j.issn.1674-4861.2019.05.004
HE K, YANG S X, GAO Y G. Prediction of traffic accident duration based in tunnels based on a pcarf combined model[J]. Journal of Transport Information and Safety, 2019, 37 (5): 26-32. (in Chinese) doi: 10.3963/j.issn.1674-4861.2019.05.004
|
[15] |
李志帅, 吕宜生, 熊刚. 基于图卷积神经网络和注意力机制的短时交通流量预测[J]. 交通工程, 2019, 19(4): 15-19+28. https://www.cnki.com.cn/Article/CJFDTOTAL-DLJA201904003.htm
LI Z S, LYU Y S, XIONG G. Short-term traffic flow prediction based on graph convolution neural network and attention mechanism[J]. Journal of Transportation Engineering, 2019, 19(4): 15-19+28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLJA201904003.htm
|
[16] |
HAMAD K, AL-RUZOUG R, ZEIADAE W, et al. Predicting incident duration using random forests[J]. Transportmetrica A: Transport Science, 2020, 16(3): 1269-1293.
|
[17] |
LI L C, SHENG X, DU B, et al. A deep fusion model based on restricted boltzmann machines for traffic accident duration prediction[J]. Engineering Applications of Artificial Intelligence, 2020(93): 103686.
|
[18] |
纪柯柯, 陈坚, 肖思瑶, 等. 文本数据驱动下的高速公路事故持续时间预测模型[J]. 交通信息与安全, 2020, 38(6): 9-16. doi: 10.3963/j.jssn.1674-4861.2020.06.002
JI K K, CHEN J, XIAO S Y, et al. Prediction model of expressway accident duration driven by text data[J]. Journal of Transport Information and Safety, 2020, 38(6): 9-16. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2020.06.002
|
[19] |
ZOU Y J, LIN B, YANG X X, et al. Application of the bayesian model averaging in analyzing freeway traffic incident clearance time for emergency management[J]. Journal of Advanced Transportation, 2021, 2021(4): 1-9.
|
[20] |
王婧娟, 陈庆奎. 1种时空注意力网络的交通预测模型[J]. 小型微型计算机系统, 2021, 42(2): 303-307. https://www.cnki.com.cn/Article/CJFDTOTAL-XXWX202102017.htm
WANG J J, CHEN Q K. A traffic prediction model of spatio-temporal attention network[J]. Journal of Chinese Mini-Micro Computer Systems, 2021, 42(2): 303-307. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XXWX202102017.htm
|
[21] |
龚兰兰, 凌兴宏. 长短时记忆网络公交短时客流预测实验设计[J]. 现代电子技术, 2021, 44(22): 97-100. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ202122020.htm
GONG L L, LING X H. Experimental design of short term passenger flow prediction of public transport based on long term and short term memory network[J]. Modern Electronic Technology, 2021, 44(22): 97-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ202122020.htm
|
[22] |
王博文, 王景升, 王统一, 等. 基于长短时记忆网络的Encoder-Decoder多步交通流预测模型[J]. 重庆大学学报, 2021, 44(11): 71-80. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE202111009.htm
WANG B W, WANG J S, WANG T Y, et al. Encoder-Decoder multi step traffic flow prediction model based on long short memory network[J]. Journal of Chongqing University, 2021, 44(11): 71-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE202111009.htm
|
[23] |
ESSIEN A, PETROUNIAS I, SAMPAIO S, et al. A deep-learning model for urban traffic flow prediction with traffic events mined from twitter[J]. World Wide Web-Internet and Web Information Systems, 2021, 24(4): 1345-1368
|
[24] |
廖挥若, 杨燕. 基于注意力的时空神经网络城市区域交通流量预测[J]. 计算机应用研究, 2021, 38(10): 2935-2940. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202110009.htm
LIAO H R, YANG Y. Predicting citywide traffic flow using attention-based spatial-temporal neural network[J]. Application Research of Computers, 2021, 38(10): 2935-2940. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202110009.htm
|
[25] |
徐琛辉, 马明辉. 基于拉依达准则的交通数据粗大误差处理优化方法[J]. 上海工程技术大学学报, 2018, 32(1): 64-67. https://www.cnki.com.cn/Article/CJFDTOTAL-SGCJ201801015.htm
XU C H, MA M H. Optimization method for gross error processing of traffic data based on pauta criterion[J]. Journal of Shanghai University of Engineering Science, 2018, 32(1): 64-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SGCJ201801015.htm
|