Volume 40 Issue 5
Nov.  2022
Turn off MathJax
Article Contents
HE Yixiong, YU Deqing, LIU Xiao, WANG Feng, MOU Junmin. A Method of Risk Identification and Decision-making Support for Ship Maneuvers at Chengshanjiao Waters Under Traffic Separation Scheme[J]. Journal of Transport Information and Safety, 2022, 40(5): 34-43. doi: 10.3963/j.jssn.1674-4861.2022.05.004
Citation: HE Yixiong, YU Deqing, LIU Xiao, WANG Feng, MOU Junmin. A Method of Risk Identification and Decision-making Support for Ship Maneuvers at Chengshanjiao Waters Under Traffic Separation Scheme[J]. Journal of Transport Information and Safety, 2022, 40(5): 34-43. doi: 10.3963/j.jssn.1674-4861.2022.05.004

A Method of Risk Identification and Decision-making Support for Ship Maneuvers at Chengshanjiao Waters Under Traffic Separation Scheme

doi: 10.3963/j.jssn.1674-4861.2022.05.004
  • Received Date: 2022-03-29
    Available Online: 2022-12-05
  • Simulation of environment, risk identification, collision avoidance and decision-making support for ship maneuvers are studied in order to counteract the high risk associated with shipping at Chengshanjiao waters under traffic separation scheme(TSS). The shipping environment of the Chengshanjiao waters is analyzed and digitalized to develop a static nautical environment model, and the dynamic traffic is investigated to set up a digitalized shipping simulation system. A method for risk identification is proposed based on the positions of ships and a collision risk model considering both space and time dimension. Good Seamanship and International Regulations for Preventing Collisions at Sea(COLREGS)are used to summarize the principles of ship maneuvers in different scenarios, and a ship maneuver meeting the principle of"minimum course altering"is produced based on the collision avoidance mechanism. A decision-making model adaptive to the random motions of target ships is developed using a rolling-window method and a feedback compensation method. Shipping traffic at the Chenshanjiao waters is simulated and multiple-ship scenarios are introduced. Study results show that: ①The proposed risk identification method using dead reckoning can identify the risk 1 168 s earlier than the regular methods at the Chengshanjiao waters when the own ship locating at(41 200 m, 38 000 m)heading to 000°with a speed of 12 n mile/h encounters with the target ship at(44 600 m, 62 300 m)heading to 210° with a speed of 12 n mile/h. ②Under a simulated multiple-ship scenario, the own ship can avoid collisions with target ships by altering to the starboard 17° at 245 s, resuming to sail at 617 s, altering to the starboard 11° at 2005 s, and resuming to sail at 2 405 s, which meets the principle of Good Seamanship. In conclusion, the proposed method can identify the collision risk earlier and support decision-making on ship maneuvers better than other methods at the Chenshanjiao waters, which provides a theoretical foundation for developing intelligent navigation systems on waters under TSS.

     

  • loading
  • [1]
    CHAUVIN C, LARDJANE S, MOREL G, et al. Human and organisational factors in maritime accidents: Analysis of collisions at sea using the HFACS[J]. Accident Analysis & Prevention, 2013, (59): 26-37.
    [2]
    HE Y X, LIU X, ZHANG K, et al. Dynamic adaptive intelligent navigation decision making method for multi-object situation in open water[J]. Ocean Engineering, 2022(253): 111238.
    [3]
    张靖雯, 马晓雪, 刘阳, 等. 基于FRAM-FAHP法的船舶碰撞事故致因分析[J]. 安全与环境工程, 2021, 28(1): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202101005.htm

    ZHANG J W, MA X X, LIU Y, et al. Causation analysis of ship collision accidents based on FRAM-FAHP method[J]. Safety and Environment Engineering, 2021, 28(1): 29-35. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202101005.htm
    [4]
    孙武. 中国船级社发布《智能船舶规范(2020)》[J]. 船舶工程, 2020, 42(3): 13-14. https://www.cnki.com.cn/Article/CJFDTOTAL-CANB202003007.htm

    SUN W. China classification society dispatching the rules of intelligent ship(2020)[J]. Ship Engineering, 2020, 42(3): 13-14. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CANB202003007.htm
    [5]
    徐言民, 张云雷, 沈杰, 等. 基于模糊集合理论的船舶碰撞危险度模型[J]. 舰船科学技术, 2021, 43(4): 82-87. doi: 10.3404/j.issn.1672-7649.2021.04.017

    XU Y M, ZHANG Y L, SHEN J, et al. A model of ship collision risk index based on fuzzy set theory[J]. Ship Science and Technology, 2021, 43(4): 82-87. (in Chinese). doi: 10.3404/j.issn.1672-7649.2021.04.017
    [6]
    胥文, 胡江强, 尹建川, 等. 基于模糊理论的船舶复合碰撞危险度计算[J]. 舰船科学技术, 2017, 39(13): 78-84. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201713016.htm

    XU W, HU J Q, YIN J C, et al. Composite evaluation of ship collision risk index based on fuzzy theory[J]. Ship Science and Technology, 2017, 39(13): 78-84. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201713016.htm
    [7]
    COLLEY B A, CURTIS R G, STOCKEL C T. Manoeuvring times, domains and arenas[J]. Journal of Navigation, 1983, 36(2): 324-328. doi: 10.1017/S0373463300025030
    [8]
    朱凯歌, 史国友, 汪琪, 等. 基于船舶领域的碰撞危险度评估模型[J]. 上海海事大学学报, 2020, 41(2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHY202002002.htm

    ZHU K G, SHI G Y, WANG Q, et al. Valuation model of ship collision risk based on ship domain[J]. Journal of Shanghai Maritime University, 2020, 41(2): 1-5. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHHY202002002.htm
    [9]
    丁志国, 张新宇, 王程博, 等. 基于驾驶实践的无人船智能避碰决策方法[J]. 中国舰船研究, 2021, 16(1): 96-104. https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG202101011.htm

    DING Z G, ZHANG X Y, WANG C B, et al. Intelligent collision avoidance decision-making method for unmanned ships based on driving practice[J]. Chinese Journal of Ship Research, 2021, 16(1): 96-104. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG202101011.htm
    [10]
    冯涂超, 郑茂, 尹奇志, 等. 基于海上避碰规则和机器学习的辅助避碰决策方法研究[J]. 武汉理工大学学报(交通科学与工程版), 2021, 45(1): 111-116. https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ202101021.htm

    FENG T C, ZHENG M, YIN Q Z, et al. Research on decision-making method of auxiliary collision avoidance based on COLREGS and machine learning[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2021, 45(1): 111-116. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ202101021.htm
    [11]
    HE Y X, JIN Y, HUANG L W, et al. Quantitative analysis of COLREG rules and seamanship for autonomous collision avoidance at open sea[J]. Ocean Engineering, 2017(140): 281-291.
    [12]
    马杰, 苏钰栋, 熊勇, 等. 基于速度障碍和人工势场的受限水域船舶避碰决策方法[J]. 中国安全科学学报, 2020, 30(11): 60-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202011010.htm

    MA J, SU Y D, XIONG Y, et al. Decision-making method for collision avoidance of ships in confined waters based on velocity obstacle and artificial potential field[J]. China Safety Science Journal, 2020, 30(11): 60-66. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202011010.htm
    [13]
    刘仁伟, 薛彦卓, 刘旸, 等. 受限水域中船舶自动避碰模型及应用[J]. 哈尔滨工业大学学报, 2018, 50(3): 171-177+184. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201803024.htm

    LIU R W, XUE Y Z, LIU Y, et al. Numerical model of ship automatic collision avoidance and the application in restricted water areas[J]. Journal of Harbin Institute of Technology, 2018, 50(3): 171-177+184. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201803024.htm
    [14]
    MOU J M, LI M X, HU W X, et al. Mechanism of dynamic automatic collision avoidance and the optimal route in multi-ship encounter situations[J]. Journal of Marine Science and Technology, 2020, 26(1): 141-158.
    [15]
    FUJII Y, TANAKA K. Traffic capacity[J]. Journal of Navigation, 1971, 24(4): 543-552.
    [16]
    GOODWIN E M. A statistical study of ship domains[J]. Journal of Navigation, 1975, 28(3): 328-344.
    [17]
    DAVIS P V, DOVE M J, STOCKEL C T. A computer simulation of marine traffic using domains and arenas[J]. Journal of Navigation, 1980, 33(2): 21-25.
    [18]
    贺益雄. 规则量化解析下船舶自动避碰模型与仿真研究[D]. 武汉: 武汉理工大学, 2015.

    HE Y X. The research of models and simulations about ship autonomous collision avoidance constrained by quantified resolution of rules[D]. Wuhan: Wuhan University of Technology, 2015. (in Chinese).
    [19]
    贺益雄, 张晓寒, 胡惟璇, 等. 基于航向控制系统的船舶动态避碰机理[J]. 西南交通大学学报, 2020, 55(5): 988-993+1027. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202005011.htm

    HE Y X, ZHANG X H, HU W X, et al. Ship dynamic collision avoidance mechanism based on course control system[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 988-993+1027. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202005011.htm
    [20]
    黄立文, 李浩宇, 梁宇, 等. 基于操纵过程推演的船舶可变速自动避碰决策方法[J]. 交通信息与安全, 2021, 39(6): 1-10. doi: 10.3963/j.jssn.1674-4861.2021.06.001

    HUANG L W, LI H Y, LIANG Y, et al. A decision-support system for automated collision avoidance of ships with variable speed based on simulation of maneuvering process[J]. Journal of Transport Information and Safety, 2021, 39(6): 1-10. (in Chinese). doi: 10.3963/j.jssn.1674-4861.2021.06.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(7)

    Article Metrics

    Article views (940) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return