Citation: | WANG Zhihao, YUAN Haiwen, LI Weina, XIAO Changshi. Trajectory Prediction and Intention Identification of Ships in Confluence Waters[J]. Journal of Transport Information and Safety, 2022, 40(4): 101-109. doi: 10.3963/j.jssn.1674-4861.2022.04.011 |
[1] |
严新平, 褚端峰, 刘佳仑, 等. 智能交通发展的现状、挑战与展望[J]. 交通运输研究, 2021, 7(6): 2-10+22. https://www.cnki.com.cn/Article/CJFDTOTAL-JTBH202106001.htm
YAN X P, CHU D F, LIU J L, et al. Current situation, challenge and prospect of intelligent transportation development[J]. Transportation Research, 2021, 7(6): 2-10+22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTBH202106001.htm
|
[2] |
严新平, 李晨, 刘佳仑, 等. 新一代航运系统体系架构与关键技术研究[J]. 交通运输系统工程与信息, 2021, 21(5): 22-29+76. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202105004.htm
YAN X P, LI C, LIU J L, et al. Research on architecture and key technologies of new generation shipping system[J]. Transportation System Engineering and Information, 2021, 21(5): 22-29+76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202105004.htm
|
[3] |
马吉林, 谢朔. 船舶智能航行及关键技术最新发展[J]. 中国船检, 2020(11): 52-58. doi: 10.3969/j.issn.1009-2005.2020.11.024
MA J L, XIE S. The latest development of ship intelligent navigation and key technology[J]. China Ship Inspection, 2020(11): 52-58. (in Chinese) doi: 10.3969/j.issn.1009-2005.2020.11.024
|
[4] |
张笛, 赵银祥, 崔一帆, 等. 智能船舶的研究现状可视化分析与发展趋势[J]. 交通信息与安全, 2021, 39(1): 7-16+34. doi: 10.3963/j.jssn.1674-4861.2021.01.002
ZHANG D, ZHAO Y X, CUI Y F, et al. A visualization analysis and development trend of intelligent ship studies[J]. Journal of Transport Information and Safety, 2021, 39(1): 7-16+34. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.01.002
|
[5] |
吴文祥, 初秀民, 柳晨光, 等. 基于模型预测控制的船舶纵向航速协同控制方法[J]. 交通信息与安全, 2021, 39(1): 52-63. doi: 10.3963/j.jssn.1674-4861.2021.01.0007
WU W X, CHU X M, LIU C G, et al. A coordinated control method of longitudinal ship speed based on model predictive control[J]. Journal of Transport Information and Safety, 2021, 39(1): 52-63. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.01.0007
|
[6] |
赵帅兵, 唐诚, 梁山, 等. 基于改进卡尔曼滤波的控制河段船舶航迹预测[J]. 计算机应用, 2012, 32(11): 3247-3250. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201211074.htm
ZHAO S B, TANG C, LIANG S, et al. Ship track prediction in controlled reach based on improved Kalman filter[J]. Computer Applications, 2012, 32(11): 3247-3250. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201211074.htm
|
[7] |
徐铁, 蔡奉君, 胡勤友, 等. 基于卡尔曼滤波算法船舶AIS轨迹估计研究[J]. 现代电子技术, 2014, 37(5): 97-100+104. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ201405030.htm
XU T, CAI F J, HU Q Y, et al. Research on ship AIS trajectory estimation based on Kalman filter algorithm[J]. Modern Electronic Technology, 2014, 37(5): 97-100+104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ201405030.htm
|
[8] |
姜佰辰, 关键, 周伟, 等. 基于多项式卡尔曼滤波的船舶轨迹预测算法[J]. 信号处理, 2019, 35(5): 741-746. https://www.cnki.com.cn/Article/CJFDTOTAL-XXCN201905002.htm
JIANG B C, GUAN J, ZHOU W, et al. Ship trajectory prediction algorithm based on polynomial Kalman filter[J]. Signal Processing, 2019, 35(5): 741-746. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XXCN201905002.htm
|
[9] |
WIEST J, HOFFKEN M, KRESEL U, et al. Probabilistic trajectory prediction with Gaussianmixture models[C]. 4th Intelligent Vehicles Symposium, Madrid, Spain: IEEE, 2012.
|
[10] |
乔少杰, 金琨, 韩楠, 等. 1种基于高斯混合模型的轨迹预测算法[J]. 软件学报, 2015, 26(5): 1048-1063.
QIAO S J, JIN K, HAN N, et al. A trajectory prediction algorithm based on Gaussian mixture model[J]. Journal of Software, 2015, 26(5): 1048-1063. (in Chinese)
|
[11] |
WANG Q Y, ZHANG Z L, WANG Z Y, et al. The trajectory prediction of spacecraft by grey method[J]. Measurement Science and Technology, 2016, 27(8): 085011. http://smartsearch.nstl.gov.cn/paper_detail.html?id=11f0aa2e92ca28cd884174c657e79ecc
|
[12] |
周艳萍, 曾宪群, 蔡玲. 改进灰色模型的船舶航行轨迹自动预测研究[J]. 舰船科学技术, 2021, 43(20): 34-36. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX202120013.htm
ZHOU Y P, ZENG X Q, CAI L. Research on automatic prediction of ship navigation trajectory based on improved grey model[J]. Ship Science and Technology, 2021, 43(20): 34-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX202120013.htm
|
[13] |
李万高, 赵雪梅, 孙德厂. 基于改进贝叶斯方法的轨迹预测算法研究[J]. 计算机应用, 2013, 33(7): 1960-1963. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201307044.htm
LI W G, ZHAO X M, SUN D C. Research on trajectory prediction algorithm based on improved Bayesian method[J]. Computer Applications, 2013, 33(7): 1960-1963. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201307044.htm
|
[14] |
RONG H, TEIXEIRA A P, SOARES C G. Ship trajectory uncertainty prediction based on a Gaussian process model[J]. Ocean Engineering, 2019, 182(15): 499-511. http://www.sciencedirect.com/science/article/pii/S0029801818315427
|
[15] |
ZHOU H, CHEN Y J, ZHANG S M. Ship trajectory prediction based on BP neural network[J]. Journal on Artificial Intelligence, 2019, 1(1): 29-36.
|
[16] |
甄荣, 金永兴, 胡勤友, 等. 基于AIS信息和BP神经网络的船舶航行行为预测[J]. 中国航海, 2017, 40(2): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201702002.htm
ZHEN R, JIN Y X, HU Q Y, et al. Prediction of ship navigation behavior based on AIS information and BP neural network[J]. China Navigation, 2017, 40(2): 6-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201702002.htm
|
[17] |
SUO Y F, CHEN W K, CLAMARAMUNT C, et al. A ship trajectory prediction framework based on a recurrent neural network[J]. Sensors, 2020, 20(18): 5133. http://www.xueshufan.com/publication/3084233918
|
[18] |
权波, 杨博辰, 胡可奇, 等. 基于LSTM的船舶航迹预测模型[J]. 计算机科学, 2018, 45(增刊2): 126-131. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2018S2023.htm
QUAN B, YANG B C, HU K Q, et al. Ship track prediction model based on LSTM[J]. Computer Science, 2018, 45(S2): 126-131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2018S2023.htm
|
[19] |
PARK J, JEONG J, PARK Y. Ship trajectory prediction based on Bi-LSTM using spectral-clustered AIS data[J]. Journal of Marine Science and Engineering, 2021, 9(9): 1037. http://agris.fao.org/agris-search/search.do?recordID=CH2022112449
|
[20] |
GAO D W, ZHU Y S, ZHANG J F, et al. A novel MP-LSTM method for ship trajectory prediction based on AIS data[J]. Ocean Engineering, 2021(228): 108956. http://www.sciencedirect.com/science/article/pii/S0029801821003917
|
[21] |
季学武, 费聪, 何祥坤, 等. 基于LSTM网络的驾驶意图识别及车辆轨迹预测[J]. 中国公路学报, 2019, 32(6): 34-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906004.htm
JI X W, FEI C, HE X K, et al. Driving intention recognition and vehicle trajectory prediction based on LSTM network[J]. Chinese Journal of Highway, 2019, 32(6): 34-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906004.htm
|
[22] |
刘姗姗, 马社祥, 孟鑫, 等. 基于CNN和Bi-LSTM的船舶航迹预测[J]. 重庆理工大学学报(自然科学), 2020, 34(12): 196-205. https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL202012025.htm
LIU S S, MA D X, MENG X, et al. Prediction model of ship trajectory based on CNN and Bi-LSTM[J]. Journal of Chongqing University of Technology (Natural Science), 2020, 34(12): 196-205. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL202012025.htm
|
[23] |
LIU X, YUAN H W, XIAO C S, et al. Hybrid-driven vessel trajectory prediction based on uncertainty fusion[J]. Ocean Engineering, 2022(248): 110836. http://arxiv.org/abs/2201.07606
|