Volume 40 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
WANG Xinglong, XU Yanfeng, JI Junrou. Classification of the Level of Flight Delay Based on a VMD-MD-Clustering Method[J]. Journal of Transport Information and Safety, 2022, 40(3): 171-178. doi: 10.3963/j.jssn.1674-4861.2022.03.018
Citation: WANG Xinglong, XU Yanfeng, JI Junrou. Classification of the Level of Flight Delay Based on a VMD-MD-Clustering Method[J]. Journal of Transport Information and Safety, 2022, 40(3): 171-178. doi: 10.3963/j.jssn.1674-4861.2022.03.018

Classification of the Level of Flight Delay Based on a VMD-MD-Clustering Method

doi: 10.3963/j.jssn.1674-4861.2022.03.018
  • Received Date: 2021-12-27
    Available Online: 2022-07-25
  • Due to the increasing number of flights, the flight delay has been increasing in recent years. To mitigate this problem, a method for classifying flight delays is studied, which provides a theoretical basis for developing relevant measures and reducing the number of flight delays. A classification model is proposed based on six indicators from time, space, and efficiency aspects. These indicators include four numerical indicators, namely"delay time", "flying duration", "number of people affected by the delay", and"voyages affected by the delay", as well as two attribute indicators, i.e., "stopover flight or not"and"passenger capacity of delayed aircraft". Then, a method for classifying levels of flight delays is proposed, which combines the variational mode decomposition(VMD), Mahalanobis depth(MD)function, and K-means clustering, named as"VMD-MD-Clustering"(V-M-C)method. Firstly, non-normal and non-stationary multi-dimensional delay data are treated as a signal sequence with noise. Secondly, the VMD method is used to stabilize and normalize the delay data. Thirdly, the MD function is used to reduce the dimensionality of the data to one dimension(1D). Fourthly, the K-means method is applied to cluster the 1D signal data and output the level of flight delay. Finally, to evaluate the proposed method, a weighted support vector machine(SVM)is applied to analyze the classification results. The operation data collected from an airport in one month are used for validation. The validation results show that the proposed V-M-C method have an accuracy of 95.41%, which outperforms the K-means method with an accuracy of 81.9%. Study results show that the proposed V-M-C method has an enhanced accuracy and therefore, it is potentially useful for formulating flight-delay disposal plans and improving the punctuality of flight operations.

     

  • loading
  • [1]
    中国民用航空局. 2019年民航行业发展统计公报[EB/OL]. http://www.caac.gov.cn.

    Civil Aviation Administration of China. 2019 Civil aviation industry development statistics bulletin[EB/OL]. http://www.caac.gov.cn. (in Chinese)
    [2]
    HENRIQUES R, FEITEIRA I. Predictive modelling: Flight delays and associated factors, Hartsfield-Jackson atlanta international airport[J]. Procedia Computer Science, 2018(138): 638-645.
    [3]
    SUVOJIT M, SANKET B, RITANK K, et al. A statistical approach to predict flight delay using gradient boosted decision tree[C]. International Conference on Computational Intelligence in Data Science(ICCIDS), Chennai, India: IEEE, 2017.
    [4]
    YI D. Predicting flight delay based on multiple linear regression[J]. IOP Conference Series: Earth and Environmental Science, 2017(81): 172-198.
    [5]
    BIN Y, ZHEN G, SOBHAN A, et al. Flight delay prediction for commercial air transport: A deep learning approach[J]. Transportation Research Part E: Logistics and Transportation Review, 2019, 125(5): 203-221.
    [6]
    MITICIC M. Probabilistic flight delay predictions using machine learning and applications to the flight-to-gate assignment problem[J]. Aerospace, 2021, (8)6: 152-172.
    [7]
    SHI T, LAI J, GU R, et al. An improved artificial neural network model for flights delay prediction[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2021, 35 (8): 146-158.
    [8]
    曹悦琪, 贾奇. 基于Logistic模型的大面积航班延误预测方法研究[J]. 交通信息与安全, 2017, 35(1): 86-91. doi: 10.3963/j.issn.1674-4861.2017.01.011

    CAO Y Q, JIA Q. A forecasting method for large-scale flight delays based on a logistic model[J]. Journal of Transport Information and Safety, 2017, 35(1): 86-91. (in Chinese) doi: 10.3963/j.issn.1674-4861.2017.01.011
    [9]
    黄俊生, 广晓平. 航班延误恢复的建模与算法研究[J]. 交通运输系统工程与信息, 2018, 18(A1): 44-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT2018S1008.htm

    HUANG J S, GUANG X P. Study on modeling and algorithm for delay recovery of flight[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18 (A1): 44-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT2018S1008.htm
    [10]
    王语桐, 朱金福, 马思思. 基于支持向量回归和线性回归的航班延误组合预测[J]. 武汉理工大学学报(交通科学与工程版), 2019, 43(3): 426-431. doi: 10.3963/j.issn.2095-3844.2019.03.010

    WANG Y T, ZHU J F, MA S S. Combination forecast of flight delay based on support vector regression and linear regression[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2019, 43(3): 426-431. (in Chinese) doi: 10.3963/j.issn.2095-3844.2019.03.010
    [11]
    丁建立, 孙玥. 基于LightGBM的航班延误多分类预测[J]. 南京航空航天大学学报, 2021, 53(6): 847-854. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK202106003.htm

    DING J L, SUN Y. Multi-classification prediction of flight delay based on lightGBM[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(6): 847-854. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK202106003.htm
    [12]
    姜雨, 陈名扬, 袁琪, 等. 基于时空图卷积神经网络的离港航班延误预测[J/OL]. 北京航空航天大学学报. (2012-10)[2021-12-27]. https://doi.org/10.13700/j.bh.1001-5965.2021.0415.

    JIANG Y, CHEN M Y, YUAN Q, et al. Departure flight delay prediction based on spation-temporal graph convolutional networks[J/OL]. Journal of Beijing University of Aeronautics and Astronautics. (2012-10)[2021-12-27]. https://doi.org/10.13700/j.bh.1001-5965.2021.0415.
    [13]
    刘继新, 杨光. 基于KNN的机场航班短期延误风险预测[J]. 重庆交通大学学报(自然科学版), 2021, 40(12): 12-18.

    LIU J X, YANG G. Short-time flight delay risk forecast based on KNN[J]. Journal of Chongqing Jiaotong University (Natural Science), 2021, 40(12): 12-18. (in Chinese)
    [14]
    朱代武, 陈泽晖, 刘豪. 基于DBN-SVM的航班延误内在模式分析[J]. 航空计算技术, 2022, 52(1): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-HKJJ202201008.htm

    ZHU D W, CHEN Z H, LIU H. Internal pattern analysis of flight delay based on DBN-SVM[J]. Aeronautical Computing Technique, 2022, 52(1): 36-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKJJ202201008.htm
    [15]
    罗凤娥, 王波, 李娜, 等. 基于数据挖掘技术的航班延误预测综述[J]. 科技和产业, 2020, 20(11): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-CYYK202011012.htm

    LUO F E, WANG B, LI N, et al. Research review of flight delay prediction based on data mining technology[J]. Science Technology and Industry, 2020, 20(11): 75-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CYYK202011012.htm
    [16]
    游峰, 梁健中, 曹水金, 等. 面向多目标跟踪的密集行人群轨迹提取和运动语义感知[J]. 交通运输系统工程与信息, 2021, 21(6): 42-54+95. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202106006.htm

    YOU F, LIANG J Z, CAO S J, et al. Dense pedestrian crowd trajectory extraction and motion semantic information perception based on multi-object tracking[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(6): 42-54+95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202106006.htm
    [17]
    DRAGOMIRETSKIY K, ZOSSO D. Two-dimensional variational mode decomposition[J]. IEEE Transaction On Signal Processing, 2015, 62(3): 531-544.
    [18]
    车建国, 赵赛. 基于数据深度的过程工业故障检测方法[J]. 计算机工程与应用, 2020, 56(1): 265-271. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202001037.htm

    CHE J G, ZHAO S. Fault detection method based on data depth for process industry[J]. Computer Engineering and Applications, 2020, 56(1): 265-271. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202001037.htm
    [19]
    孙灿飞, 王友仁, 沈勇, 等. 基于参数自适应变分模态分解的行星齿轮箱故障诊断[J]. 航空动力学报, 2018, 33(11): 2756-2765. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201811022.htm

    SUN C F, WANG Y R, SHEN Y, et al. Fault diagnosis of planetary gearbox based on adaptive parameter variational mode decomposition[J]. Journal of Aerospace Power, 2018, 33(11): 2756-2765. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201811022.htm
    [20]
    王兴隆, 纪君柔, 石宗北. 加权K-prototype-粗糙集的航班延误等级划分研究[J]. 计算机仿真, 2021, 38(9): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ202109014.htm

    WANG X L, JI J R, SHI Z B. Flight delay classification based on weighted K-prototype-rough sets[J]. Computer Simulation, 2021, 38(9): 70-75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ202109014.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (877) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return