Citation: | LI Hao, WANG Xiaoyuan, HAN Junyan, LIU Shijie, CHEN Longfei, SHI Huili. A Method for Identifying Temperament Propensity of Drivers Based on AutoNavi Navigation Data and a FOA-GRNN Model[J]. Journal of Transport Information and Safety, 2022, 40(2): 63-72. doi: 10.3963/j.jssn.1674-4861.2022.02.008 |
[1] |
WANG X, LIU Y, WANG F, et al. Feature extraction and dynamic identification of drivers' emotions[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2019 (62): 175-191.
|
[2] |
王晓原, 刘亚奇, 张敬磊. 基于行程时间的人车特征动态辨识方法[J]. 汽车安全与节能学报, 2017, 8 (1): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-QCAN201701004.htm
WANG X Y, LIU Y Q, ZHANG J L. Dynamic identification method of driver and vehicle features based on travel time[J]. Journal of Automotive Safety and Energy, 2017, 8(1): 38-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCAN201701004.htm
|
[3] |
JOHNSON D A, TRIVEDI M M. Driving style recognition using a smartphone as a sensor platform[C]. 14th International IEEE Conference on Intelligent Transportation Systems (ITSC). Washington, D. C., USA: IEEE, 2011.
|
[4] |
FENG Y, PICKERING S, CHAPPELL E, et al. A support vector clustering based approach for driving style classification[J]. International Journal of Machine Learning and Computing, 2019, 9 (3): 344-350. doi: 10.18178/ijmlc.2019.9.3.808
|
[5] |
YAN F, LIU M, DING C, et al. Driving style recognition based on electroencephalography data from a simulated driving experiment[J]. Frontiers in Psychology, 2019 (10): 1254. https://pubmed.ncbi.nlm.nih.gov/31191419/
|
[6] |
WANG W, XI J, ZHAO D. Driving style analysis using primitive driving patterns with Bayesian nonparametric approaches[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20 (8): 2986-2998. https://ieeexplore.ieee.org/abstract/document/8506402/
|
[7] |
WANG X Y, LIU Y Q, LIU L P, et al. Experimental research on car movement characteristics under the condition of different driving emotions[J]. Advances in Mechanical Engineering, 2018, 10 (12): 1-13. doi: 10.1177/1687814018815369
|
[8] |
王晓原, 张敬磊, Xuegang (Jeff)Ban. 基于动态人车环境协同推演的汽车驾驶倾向性辨识[M]. 北京: 科学出版社, 2013.
WANG X Y, ZHANG J L, BAN X. Identification of vehicle driving tendency based on dynamic driver-vehicle-environment collaborative deduction[M]. Beijing: Science Press, 2013. (in Chinese)
|
[9] |
HOU Y, EDARA P, SUN C. Modeling mandatory lane changing using Bayes classifier and decision trees[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 15(2): 647-655.
|
[10] |
TRAN D, DO H M, SHENG W, et al. Real-time detection of distracted driving based on deep learning[J]. IET Intelligent Transport Systems, 2018, 12 (10): 1210-1219. doi: 10.1049/iet-its.2018.5172
|
[11] |
王畅, 付锐, 彭金栓, 等. 应用于换道预警的驾驶风格分类方法[J]. 交通运输系统工程与信息, 2014, 14(3): 187-193+200. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201403029.htm
WANG C, FU R, PENG J S, et al. Driving style classification method for lane change warning system[J]. Journal of Transportation Systems Engineering and Information Technology. 2014, 14 (3): 187-193+200. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201403029.htm
|
[12] |
严利鑫, 贺宜, 糜子越, 等. 考虑生理特性的驾驶行为险态辨识研究[J]. 交通信息与安全, 2019, 37 (3): 12-19+27. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201903002.htm
YAN L X, HE Y, MI Z Y, et al. A physiological signal based method for identifying risk status of driving behaviors[J]. Journal of Transport Information and Safety, 2019, 37(3): 12-19+27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201903002.htm
|
[13] |
朱冰, 李伟男, 汪震, 等. 基于随机森林的驾驶人驾驶习性辨识策略[J]. 汽车工程, 2019, 41 (2): 213-218+224. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201902014.htm
ZHU B, LI W N, WANG Z, et al. Identification strategy of driving style based on random forest[J]. Automotive Engineering, 2019, 41 (2): 213-218+224. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201902014.htm
|
[14] |
SUBASI A, GURSOY M I. EEG signal classification using PCA, ICA, LDA and support vector machines[J]. Expert Systems with Applications, 2010, 37 (12): 8659-8666. doi: 10.1016/j.eswa.2010.06.065
|
[15] |
SPECHT D F. A general regression neural network[J]. IEEE Transactions on Neural Networks, 1991, 2 (6): 568-576. doi: 10.1109/72.97934
|
[16] |
ROOKI R. Application of general regression neural network (GRNN) for indirect measuring pressure loss of Herschel -Bulkley drilling fluids in oil drilling[J]. Measurement, 2016, 85: 184-191.
|
[17] |
PAN W T. A new fruit fly optimization algorithm: taking the financial distress model as an example[J]. Knowledge-Based Systems, 2012 (26): 69-74.
|
[18] |
潘文超. 果蝇最佳化演算法: 最新演化式计算技术[M]. 台北: 沧海书局. 2011.
PAN W C. Fruit fly optimization algorithm: A new evolutionary computing technique[M]. Taipei: Canghai Bookstore. 2011. (in Chinese)
|
[19] |
EFTEKHARI H R, GHATEE M. Hybrid of discrete wavelet transform and adaptive neuro fuzzy inference system for overall driving behavior recognition[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2018(58): 782-796.
|
[20] |
WANG W, XI J, CHONG A, et al. Driving style classification using a semisupervised support vector machine[J]. IEEE Transactions on Human-Machine Systems, 2017, 47(5): 650-660.
|