Volume 39 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
ZHANG Fengting, YANG Juhua, YU Jiang, QIN Yongsheng, SHEN Facai. Optimization of Container Train Service Route Based on Sea-Rail Intermodal Transportation[J]. Journal of Transport Information and Safety, 2021, 39(4): 125-133. doi: 10.3963/j.jssn.1674-4861.2021.04.016
Citation: ZHANG Fengting, YANG Juhua, YU Jiang, QIN Yongsheng, SHEN Facai. Optimization of Container Train Service Route Based on Sea-Rail Intermodal Transportation[J]. Journal of Transport Information and Safety, 2021, 39(4): 125-133. doi: 10.3963/j.jssn.1674-4861.2021.04.016

Optimization of Container Train Service Route Based on Sea-Rail Intermodal Transportation

doi: 10.3963/j.jssn.1674-4861.2021.04.016
  • Received Date: 2021-01-22
  • Since uncertain factors are affecting the operation of container trains in the process of sea-rail intermodaltransportation.Combined with the customers’ demand for a fixed time window , the uncertain planning interval is introduced to represent the range of time in container loading and unloading at each customer node.Meanwhile,the demand time window with timeliness requirements is set as a soft constraint. The penalty function is integrated into theobjective function of the transportation cost as a penalty term. A reasonable penalty coefficient is selected to constructa multi-objective optimization model of the train service path combined with the low transportation cost and less transportation time. For uncertain variables,the chance-constrained programming transformation model is used to obtain amulti-objective path optimization model considering fuzzy time. Then, the multi-objective problem is transformed intoa single objective problem by weighted summation, and the artificial bee colony algorithm is designed to solve the constructed model.The results of sea-rail intermodal transportation in Yantian Port show that:① The transportation timeis reduced by 88% in the constraint of hard time windows, but the cost is increased by 97%,fully showing the advantage of soft time windows.② When only the transportation cost is considered,the transportation time increases by5.3%. When only the transportation time is considered , the transportation cost increases by 67.8%.These experimental results confirm that the proposed model reduces the transportation cost and meets the needs of different transportation timeliness of different customers.

     

  • loading
  • [1]
    齐颖秀, 郎茂祥, 董楠, 等. 集装箱海铁联运全程物流服务发展对策研究[J]. 铁道运输与经济, 2019, 41 (5): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-TDYS201905014.htm

    QI Yingxiu, LANG Maoxiang, DONG Nan, et al. Research on the development strategy of container sea rail intermodal logistics service[J]. Railway Transportation and Economy, 2019, 41 (5): 58-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDYS201905014.htm
    [2]
    刘璘, 朱小林. 考虑总成本的冷藏集装箱海铁联运运输路径优化[J]. 华中师范大学学报(自然科学版), 2017, 51 (4): 504-509. https://www.cnki.com.cn/Article/CJFDTOTAL-HZSZ201704014.htm

    LIU Lin, ZHU Xiaolin. Optimization of sea rail intermodal transportation path for refrigerated containers considering total cost[J]. Journal of Central China Normal University (Natural Science Edition), 2017, 51 (4): 504-509. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZSZ201704014.htm
    [3]
    BHATTA-CHARYA A, KUMAR S A, TIWARI M K, et al. An intermodal freight transport system for optimal supply chain logistics[J]. Transportation Research Part C: Emerging Technologies, 2014, 38(1): 73 84. http://www.onacademic.com/detail/journal_1000036137923210_d646.html
    [4]
    刘畅, 关秀婷, 张金伟, 等. 考虑时间价值成本的中欧笔记本电脑多式联运路径优化研究[J]. 铁道科学与工程学报, 2019, 16(9): 2352-2359. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201909030.htm

    LIU Chang, GUAN Xiuting, ZHANG Jinwei, et al. Study on route optimization of China-EU laptop multimodal transportation considering time value cost[J]. Journal of Railway Science and Engineering, 2019, 16 (9): 2352-2359. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201909030.htm
    [5]
    刘丹, 赵嵩正. 可持续多式联运网络设计的多目标优化模型及算法[J]. 系统工程, 2015, 33(8): 133-139, https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT201508020.htm

    LIU Dan, ZHAO Songzheng. Multi-objective optimization model and algorithm for sustainable multimodal transport network design[J]. System Engineering, 2015, 33 (8): 133-139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT201508020.htm
    [6]
    李玉民, 郭晓燕, 杨露. 考虑多目标的中欧集装箱多式联运路径选择[J]. 铁道科学与工程学报, 2017, 14(10): 2239-2248. U doi: 10.3969/j.issn.1672-7029.2017.10.027

    Yumin, GUO Xiaoyan, YANG Lu. Route selection of Ghina-Europe container multimodal transport considering multi-objectives[J], Journal of Railway Science and Engineering, 2017, 14(10): 2239-2248. (in Chinese) doi: 10.3969/j.issn.1672-7029.2017.10.027
    [7]
    ZILIASKOPOULOS A, WARDELL W. An intermodal optimum path algorithm for multimodal networks with dynamic arc travel times and switching delays[J]. European Journal of Operational Research, 2000, 125(3) : 486-502. doi: 10.1016/S0377-2217(99)00388-4
    [8]
    YANG H L, DONG F, DI L. Segmented procurement optimization of container multimodal transport service based on convergent combination[J]. Journal of Transportation Systems Engineering & Information Technology, 2014, 14(4): 17-22.
    [9]
    户佐安, 孙燕, 薛锋. 基于海铁联运的港口集装箱运输集卡路径选择[J]. 交通运输工程与信息学报, 2020, 18(2): 68-74. doi: 10.3969/j.issn.1672-4747.2020.02.008

    HU zuoan, SUN Yan, XUE Feng. Container truck routing based on sea rail intermodal Transportation[J]. Joumal of Transportation Engineering and Information, 2020, 18(2): 68-74. (in Chinese) doi: 10.3969/j.issn.1672-4747.2020.02.008
    [10]
    靳志宏, 王小寒, 任刚, 等. 共享堆场协议下海铁联运集装箱堆场分配优化[J]. 中国航海, 2020, 43(3): 105-11L doi: 10.3969/j.issn.1000-4653.2020.03.019

    JIN Zhihong, WANG Xiaohan, REN Gang, et al. Optimization of container yard allocation for sea rail intermodal transportation under shared yard agreement[J]. China Navigation, 2020, 43 (3): 105-lll. (in Chinese) doi: 10.3969/j.issn.1000-4653.2020.03.019
    [11]
    武慧荣, 朱晓宁, 邓红星. 集装箱海铁联运港口混堆堆场箱区均衡分配模型[J]. 重庆交通大学学报(自然科学版), 2018, 37(4) : 109-115. doi: 10.3969/j.issn.1674-0696.2018.04.17

    WU Huirong, ZHU Xiaoning, DENG Hongxing. Equilibrium distribution model of container yard in container sea rail intermodal port[J]. Journal of Chongqing Jiaotong University (Natural Science Edition), 2018, 37 (4): 109-115. (in Chinese) doi: 10.3969/j.issn.1674-0696.2018.04.17
    [12]
    GARCIA-ALONSO L, SANCHEZ-SORIANO J. Analysis of the evolution of the inland traffic distribution and provincial hinterland share of the Spanish port system[J]. Transport Reviews, 2010, 30(3): 275-297. doi: 10.1080/01441640902985983
    [13]
    殷亚, 张惠珍. 求解带硬时间窗的多目标车辆路径问题的多种混合蝙蝠算法[J]计算机应用研究, 2017, 34(12): 3632-3636. doi: 10.3969/j.issn.1001-3695.2017.12.025

    YIN Ya, ZHANG Huizhen. Multiple hybrid bat algorithms for solving multi-objective vehicle routing problem with hard time Avindows[J]. Computer Application Research, 2017, 34(12): 3632-3636. (in Chinese) doi: 10.3969/j.issn.1001-3695.2017.12.025
    [14]
    CETIN S, A heuristic algorithm for vehicle routing problems with simultaneous pick-up and delivery and hard time windows[J]. Open Journal of Social Sciences, 2015, 3(3): 35-41. doi: 10.4236/jss.2015.33008
    [15]
    FAZAYELI S, EYDI A, KAMALADADI I N. Location-routing problem in multimodal transportation network with time windows and fuzzy demands: presenting a two-part genetic algorithm[J]. Computers & Industrial Engineering, 2018, 119 (5)〖233-246.
    [16]
    汤银英, 戴炜东, 陈思. 考虑多节点时间窗差异的集装箱多式联运路径选择研究[J]. 交通运输工程与信息学报, 2020, 18(1): 34-42. doi: 10.3969/j.issn.1672-4747.2020.01.005

    TANG Yinying, DAI Weidong, CHEN Si. Research on container multimodal transport route selection considering the difference of multi node time window[J]. Journal of Transportation Engineering and Information, 2020, 18 (1): 34-42. (in Chinese) doi: 10.3969/j.issn.1672-4747.2020.01.005
    [17]
    刘宝碇, 赵瑞清, 王纲. 不确定规划及应用[M]. 北京: 清华大学出版社, 2003.

    LIU Baoding, ZHAO Ruiqing, WANG Gang. Uncertain planning and application[M]. Beijing: Tsinghua University Press, 2003. (in Chinese)
    [18]
    江铭炎, 袁东风. 人工蜂群算法及其应用[M]. 北京: 科学出版社, 2014

    JIANG Mingyan, YUAN Dongfeng. Artificial bee colony algorithm and its application[M]. Beijing: Science Press, 2014. (in Chinese)
    [19]
    王梦楠. 基于蚁群算法的集装箱港口海铁联运班列服务网络优化[D]. 大连: 大连海事大学, 2018.

    WANG Mengnan. Optimization of container port sea-rail combined transport service network based on ant colony algorithm[D]. Dalian: DaIian Maritime University, 2018. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(7)

    Article Metrics

    Article views (843) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return