Citation: | ZHANG Yiming, CHEN Mingming, SHI Lei, KANG Ronggui. A Forecast of Short-term Passenger Flow of Rail Transit Based on IGWO-BP Algorithm[J]. Journal of Transport Information and Safety, 2021, 39(3): 85-92. doi: 10.3963/j.jssn.1674-4861.2021.03.011 |
[1] |
王明生. 城市轨道交通概论[M]. 北京: 人民交通出版社, 2012.
WANG Mingsheng. Introduction to urban rail transit[M]. Beijing: China Communications Press, 2012. (in Chinese)
|
[2] |
张亚运. 基于客流短时预测的城市轨道交通运营组织[D]. 西安: 长安大学, 2016.
ZHANG Yayun. Operation organization of urban rail transit based on the passenger flow short-term prediction[D]. Xi'an: Chang'an University, 2016. (in Chinese)
|
[3] |
ROOS J, GAVIN G, BONNEVAY S. A dynamic Bayesian network approach to forecast short-term urban rail passenger flows with incomplete data[J]. Transportation Research Procedia, 2017(26): 53-61. http://www.sciencedirect.com/science/article/pii/S2352146517308670
|
[4] |
白伟华, 张传斌, 张塽旖, 等. 基于异常值识别卡尔曼滤波器的短期交通流预测[J]. 计算机应用研究, 2021, 38(3): 817-821. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202103034.htm
BAI Weihua, ZHANG Chuanbin, ZHANG Shuangyi, et al. Outlier-identified kalman filter for short-term traffic flow forecasting[J]. Application Research of Computers: 2021, 38(3): 817-821. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202103034.htm
|
[5] |
帅斌, 张玥, 张永超. 我国市郊铁路客流特征分析及需求预测[J]. 铁道工程学报, 2014(1): 20-23+106. doi: 10.3969/j.issn.1006-2106.2014.01.004
SHUAI Bin, ZHANG Yue, ZHANG Yongchao. Analysis of suburban railway passenger flow characteristics and demand forecast in china[J]. Journal of Railway Engineering Society, 2014(1): 20-23+106. (in Chinese) doi: 10.3969/j.issn.1006-2106.2014.01.004
|
[6] |
王兴川, 姚恩建, 刘莎莎. 基于AFC数据的大型活动期间城市轨道交通客流预测[J]. 北京交通大学学报, 2018, 42(1): 87-93. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201801013.htm
WANG Xingchuan, YAO Enjian, Liu Shasha. Urban rail transit passenger flow forecasting for large special event based on AFC data[J]. Journal of Beijing Jiaotong University, 2018, 42(1): 87-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201801013.htm
|
[7] |
郭旷, 王雪梅, 张宁. 城市轨道交通短时客流不确定性预测模型[J]. 城市轨道交通研究, 2020, 23(1): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT202001008.htm
GUO Kuang, WANG Xuemei, ZHANG Ning. Uncertainty prediction model of short-term passenger flow in urban rail transit[J]. Urban Mass Tranit, 2020, 23(1): 22-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT202001008.htm
|
[8] |
SUN Yuxing, LENG Biao, GUAN Wei. A novel wavelet-SVM short-time passenger flow prediction in Beijing subway sys-tem[J]. Neurocomputing, 2015(166): 109-121. http://dl.acm.org/citation.cfm?id=2794209
|
[9] |
赵阳阳, 夏亮, 江欣国. 基于经验模态分解与长短时记忆神经网络的短时地铁客流预测模型[J]. 交通运输工程学报, 2020, 20(4): 194-204. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202004020.htm
ZHAO Yangyang, XIA Liang, JIANG Xinguo. Short-term metro passenger flow prediction based on EMD-LSTM[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 194-204. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202004020.htm
|
[10] |
HAO S, LEE D, ZHAO D. Sequence to sequence learning with attention mechanism for short-term passenger flow pediction in large-scale metro system[J]. Transportation Research Part C: Emerging Technologies, 2019(107): 287-300. http://www.sciencedirect.com/science/article/pii/S0968090X19300245
|
[11] |
赵建立, 石敬诗, 孙秋霞, 等. 基于混合深度学习的地铁站进出客流量短时预测[J]. 交通运输系统工程与信息, 2020, 20(5): 128-134. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202005019.htm
ZHAO Jianli, SHI Jingshi, SUN Qiuxia, et al. Short-time inflow and outflow prediction of metro stations based on hybrid deep learning[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(5): 128-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202005019.htm
|
[12] |
PENG Yanni, XIANG Wanli. Short-term traffic volume prediction using GA-BP based on wavelet denoising and phase space reconstruction[J]. Physica A: Statistical Mechanics and its Applications, 2020(549): 123913. http://www.sciencedirect.com/science/article/pii/S0378437119321715
|
[13] |
ZHOU Xingyu, LI Hongmei, ZHENG Weihao, et al. Short-term traffic flow prediction based on the IMM-BP-UKF model[J]. Journal of Highway and Transportation Research and Development(English Edition), 2019, 13(2): 56-64. doi: 10.1061/JHTRCQ.0000679
|
[14] |
李建森, 沈齐, 范馨月. 城市道路短时交通流量预测[J]. 数学的实践与认识, 2019, 49(5): 192-197. https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS201905021.htm
LI Jiansen, SHEN Qi, FAN Xinyue. Forecast of short-term traffic flow on urban roads[J]. Mathematics in Practice and Theory, 2019, 49(5): 192-197. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS201905021.htm
|
[15] |
MIRJALILI S, MIRJALILI S M, LEWIS A. Grey Wolf Optimizer[J]. Advances in Engineering Software, 2014, 69(3): 46-61. http://www.sciencedirect.com/science/article/pii/s0965997813001853
|
[16] |
傅蔚阳, 刘以安, 薛松. 基于灰狼算法与小波神经网络的目标威胁评估[J]. 浙江大学学报(工学版), 2018, 52(4): 680-686. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201804010.htm
FU Weiyang, LIU Yian, XUE Song. Target threat assessment using grey wolf optimization and wavelet neural network[J]. Journal of Zhejiang University(Engineering Science), 2018, 52(4): 680-686. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201804010.htm
|
[17] |
梁强升, 许心越, 刘利强. 面向数据驱动的城市轨道交通短时客流预测模型[J]. 中国铁道科学, 2020, 41(4): 153-162. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202004018.htm
LIANG Qiangsheng, XU Xinyue, LIU Liqiang. Data-driven short-term passenger flow prediction model for urban rail transit[J]. China Rail Way Science, 2020, 41(4): 153-162. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202004018.htm
|
[18] |
何正风. MATLAB R2015b神经网络技术[M]. 北京: 清华大学出版社, 2016.
HE Zhengfeng. MATLAB R2015b neural network technology[M]. Beijing: Tsinghua University Press, 2016. (in Chinese)
|
[19] |
NIU Peifeng, NIU Songpeng, LIU Nan, et al. The defect of the grey wolf optimization algorithm and its verification method[J]. Knowledge-Based Systems, 2019(171): 37-43. http://www.sciencedirect.com/science/article/pii/S0950705119300188
|