Volume 39 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
TANG Tianpei, CHEN Feng, GUO Yuntao, ZHU Senlai. Influencing Factors of Electrical Bikes'Risky Riding Behaviors Based on Reinforcement Sensitivity Theory[J]. Journal of Transport Information and Safety, 2021, 39(3): 25-32. doi: 10.3963/j.jssn.1674-4861.2021.03.004
Citation: TANG Tianpei, CHEN Feng, GUO Yuntao, ZHU Senlai. Influencing Factors of Electrical Bikes'Risky Riding Behaviors Based on Reinforcement Sensitivity Theory[J]. Journal of Transport Information and Safety, 2021, 39(3): 25-32. doi: 10.3963/j.jssn.1674-4861.2021.03.004

Influencing Factors of Electrical Bikes'Risky Riding Behaviors Based on Reinforcement Sensitivity Theory

doi: 10.3963/j.jssn.1674-4861.2021.03.004
  • Received Date: 2020-10-18
  • From a traffic management perspective towards the reward and punishment strategies, the work studies the influence mechanisms of the reward and punishment responses of electric bike riders on their risky riding behaviors.A psychological cognitive model for risky riding behaviors is developed based on the revised reinforcement sensitivity.Perceived risk and risky riding intention are incorporated into the proposed framework, accounting for the potential impacts of gender, age, and riding frequency.The structural equation model is used to identify key psychological factors influencing risky riding behaviors with the self-reported survey data of 402 valid samples.The model-estimation results are as follows: ①The revised psychological cognitive model fits the data well(χ2/df=1.343, and RMSEA=0.029)and can explain 48%of the variance in risky riding behaviors.②Punishment sensitivity and reward sensitivity significantly affect risky riding behaviors, with the stronger influence of the latter.③Perceived risk and risky riding intention statistically affect risky riding behaviors.④Gender directly affects punishment sensitivity and rewardsensitivity and indirectly affects the risky riding behaviors via both variables.The influence of age and riding frequency on each variable is not significant.

     

  • loading
  • [1]
    公安部交通管理局. 2017年中华人民共和国道路交通事故统计年报[R]. 无锡: 公安部交通管理局, 2018.

    Traffic Management Bureau of the Ministry of Public Security. The people's republic of China road traffic accident annual statistic report[R]. Wuxi: Traffic Management Bureau of the Ministry of Public Security, 2018. (in Chinese).
    [2]
    CHEN Qiang, DAI Bing. Characteristics and casualty analysis of two-wheeler accidents in China, data source: The China in-depth accident study(CIDAS)[J]. SAE Technical Paper, 2018(1): 1-10. http://www.researchgate.net/publication/324409743_Characteristics_and_Casualty_Analysis_of_Two-_Wheeler_Accidents_in_China_Data_Source_The_China_In-Depth_Accident_Study_CIDAS
    [3]
    WU Changxu, YAO Lin, ZHANG Kan. The red-light running behavior of electric bike riders and cyclists at urban intersections in China: An observational study[J]. Accident Analysis & Prevention, 2012, 49(11): 186-192. http://www.ncbi.nlm.nih.gov/pubmed/23036395
    [4]
    PAI C W, JOU R C. Cyclists'red-light running behaviors: An examination of risk taking, opportunistic, and law-obeying behaviors[J]. Accident Analysis & Prevention, 2014(62): 191-198. http://www.ncbi.nlm.nih.gov/pubmed/24172086
    [5]
    李英帅, 张旭, 王卫杰, 等. 基于随机森林的电动自行车骑行者事故伤害程度影响因素分析[J]. 交通运输系统工程与信息, 2021, 21(1): 196-200. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202101032.htm

    LI Yingshuai, ZHANG Xu, WANG Weijie, et al. Factors affecting electric bicycle rider injury in accident based on random Forest model[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(1): 196-200. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202101032.htm
    [6]
    何庆, 马建菲, 李洋, 等. 基于122警情的电动自行车交通事故特征研究[J]. 交通信息与安全, 2018, 36(5): 132-138. doi: 10.3963/j.issn.1674-4861.2018.05.017

    HE Qing, MA Jianfei, LI Yang, et al. A study of characteristics of road accidents involve electric bicycles based on 122 emergency number[J]. Journal of Transport Information and Safety, 2018, 36(5): 132-138. (in Chinese). doi: 10.3963/j.issn.1674-4861.2018.05.017
    [7]
    YANG Xiaobao, HUAN Mei, ABDEL-ATY M, et al. A hazard-based duration model for analyzing crossing behavior of cyclists and electric bike riders at signalized intersections[J]. Accident Analysis & Prevention, 2015(74): 33-41. http://smartsearch.nstl.gov.cn/paper_detail.html?id=cbaa0e78017807ec30b13578bd8263eb
    [8]
    FRABONI F, MARÍN PUCHADES V, DE ANGELIS M, et al. Red-light running behavior of cyclists in Italy: An observational study[J]. Accident Analysis & Prevention, 2018(120): 219-232. http://www.ncbi.nlm.nih.gov/pubmed/30172107
    [9]
    SCHLEINITZ K, PETZOLDT T, KRÖLING S, et al. (E-)Cyclists running the red light-the influence of bicycle type and in-frastructure characteristics on red light violations[J]. Accident Analysis & Prevention, 2019(122): 99-107. http://www.ncbi.nlm.nih.gov/pubmed/30340148
    [10]
    ZHANG Yiqi, WU Changxu. The effects of sunshields on red light running behavior of cyclists and electric bike riders[J]. Accident Analysis & Prevention, 2013(52): 210-218. http://europepmc.org/abstract/med/23348101
    [11]
    TANG Tianpei, WANG Hua, MA Jie, et al. Analysis of crossing behavior and violations of electric bikers at signalized intersections[J/OL]. (2020-01)[2020-08-10]. https://www.hindawi.com/journals/jat/2020/3594963/.
    [12]
    YAO Lin, WU Changxu. Traffic safety for electric bike riders in China attitudes, risk perception, and aberrant riding behaviors[J]. Transportation Research Record, 2012, 2314(1): 49-56. doi: 10.3141/2314-07
    [13]
    YANG Hongtai, LIU Xiaohan, SU Fan, et al. Predicting e-bike users'intention to run the red light: An application and extension of the theory of planned behavior[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2018(58): 282-291. http://www.sciencedirect.com/science/article/pii/S1369847817306976
    [14]
    GRAY J A. The Psychophysiological basis of introversion-extraversion[J]. Behaviour Research and Therapy, 1970, 8(3): 249-266. doi: 10.1016/0005-7967(70)90069-0
    [15]
    CONSTANTINOU E, PANAYIOTOU G, KONSTANTINOU N, et al. Risky and aggressive driving in young adults: Personality matters[J]. Accident Analysis & Prevention, 2011, 43(4): 1323-1331. http://www.ncbi.nlm.nih.gov/pubmed/21545861
    [16]
    CASTELLA J, PEREZ J. Sensitivity to punishment and sensitivity to reward and traffic violations[J]. Accident Analysis & Prevention, 2004, 36(6): 947-952. http://europepmc.org/abstract/MED/15350871
    [17]
    SCOTT-PARKER B, WATSON B, KING M J, et al. The influence of sensitivity to reward and punishment, propensity for sensation seeking, depression, and anxiety on the risky behaviour of novice drivers: A path model[J]. British Journal of Psychology, 2012, 103(2): 248-267. doi: 10.1111/j.2044-8295.2011.02069.x
    [18]
    GRAY J, MCNAUGHTON N. The neuropsychology of anxiety an enquiry into the functions of the septo-hippocampal system[M]. 2nd Ed. Oxford: Oxford University Press, 2000.
    [19]
    CORR P J, COOPER A J. The reinforcement sensitivity theory of personality questionnaire(RST-PQ): Development and validation[J]. Psychological Assessment, 2016, 28(11): 1427-1440. doi: 10.1037/pas0000273
    [20]
    HARBECK E L, GLENDON A I. How reinforcement sensitivity and perceived risk influence young drivers'reported engagement in risky driving behaviors[J]. Accident Analysis & Prevention, 2013(54): 73-80.
    [21]
    AJZEN I. The theory of planned behavior[J]. Organizational Behavior and Human Decision Processes, 1991, 50(2): 179-211. doi: 10.1016/0749-5978(91)90020-T
    [22]
    SCOTT-PARKER B, WATSON B, KING M J, et al. Confirmatory factor analysis of the behaviour of young novice drivers scale(BYNDS)[J]. Accident Analysis & Prevention, 2012(49): 385-391. http://www.ncbi.nlm.nih.gov/pubmed/23036417
    [23]
    HARBECK E L, GLENDON A I, HINE T J. Reward versus punishment: Reinforcement sensitivity theory, young novice drivers'perceived risk, and risky Driving[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2017(47): 13-22. http://www.sciencedirect.com/science/article/pii/S136984781630170X
    [24]
    D'ARCY J, HERATH T. A review and analysis of deterrence theory in the is security literature: Making sense of the disparate findings[J]. European Journal of Information Systems, 2011, 20(6): 643-658. doi: 10.1057/ejis.2011.23
    [25]
    MURPHY K, HELMER I. Testing the importance of forgiveness for reducing repeat offending[J]. Australian and New Zealand Journal of Criminology, 2013(46): 138-156.
    [26]
    FLOYD D L, PRENTICE-DUNN S, ROGERS R W. A meta-analysis of research on protection motivation theory[J]. Journal of Applied Social Psychology, 2000(30): 407-429. doi: 10.1111/j.1559-1816.2000.tb02323.x
    [27]
    HOLLAND C, HILL R. The effect of age, gender and driver status on pedestrians'intentions to cross the road in risky situations[J]. Accident Analysis & Prevention, 2007, 39(2): 224-237. http://europepmc.org/abstract/MED/16979132
    [28]
    ZHOU Ronggang, HORREY W J, YU Ruifeng. The effect of conformity tendency on pedestrians'road-crossing intentions in China: An application of the theory of planned behavior[J]. Accident Analysis & Prevention, 2009, 41(3): 491-497. http://her.oxfordjournals.org/external-ref?access_num=19393798&link_type=MED
    [29]
    CHORLTON K, CONNER M, JAMSON S. Identifying the psychological determinants of risky riding: An application of an extended theory of planned behaviour[J]. Accident Analysis & Prevention, 2012(49): 142-153. http://www.ncbi.nlm.nih.gov/pubmed/23036391
    [30]
    MATSUI Y, OIKAWA S. Situational characteristics of fatal pedestrian accidents involving vehicles traveling at low speeds in Japan[J]. Traffic Injury Prevention, 2019(20): 1-6. doi: 10.1080/15389588.2019.1587166?src=recsys&
    [31]
    CASTANIER C, DEROCHE T, WOODMAN T. Theory of planned behaviour and road violations: The moderating influence of perceived behavioural control[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2013(18): 148-158. http://www.sciencedirect.com/science/article/pii/S136984781300017X
    [32]
    NEMME H E, WHITE K M. Texting while driving: psychosocial influences on young people's texting intentions and behaviour[J]. Accident Analysis & Prevention, 2010, 42(4): 1257-1265.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(3)

    Article Metrics

    Article views (475) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return