Volume 39 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
ZHOU Jun, BAO Xu, GAO Yan, LI Yun, JIANG Qing. A Vehicle Detecting Method Based on Pattern Recognition Combined with ST-MRF[J]. Journal of Transport Information and Safety, 2021, 39(2): 95-100, 108. doi: 10.3963/j.jssn.1674-4861.2021.02.012
Citation: ZHOU Jun, BAO Xu, GAO Yan, LI Yun, JIANG Qing. A Vehicle Detecting Method Based on Pattern Recognition Combined with ST-MRF[J]. Journal of Transport Information and Safety, 2021, 39(2): 95-100, 108. doi: 10.3963/j.jssn.1674-4861.2021.02.012

A Vehicle Detecting Method Based on Pattern Recognition Combined with ST-MRF

doi: 10.3963/j.jssn.1674-4861.2021.02.012
  • Received Date: 2020-07-07
  • The main difficulty of the vehicle detecting technology lies in overcoming the inaccuracy of detecting, which is directly affected by video shaking, mutual occlusion between vehicles, occlusion between the vehicles, and its shadow due to illumination changes. Based on the traditional spatial-temporal Markov random field (ST-MRF), the vehicle detecting method combined with pattern recognition and ST-MRF is proposed to address the problem. The boundary between two vehicles occluding each other is segmented by the pattern recognition technology, with the edge clearances and boundary information of occluded vehicles identified. Then, the results of pattern recognition are fed back to ST-MRF algorithm, which reassigns labels to occluded vehicles, integrates incomplete segmentation, and determines individual vehicle information. The results in the road section show 325 vehicles driving in the test area, vehicles tracked by the original ST-MRF algorithm, and the success rate is 79%. When the pattern recognition technology combined with ST-MRF algorithm to calculate 315 vehicles, the success rate is 97%. The results at the intersection show that the method can obtain more accurate results of vehicle detection at the intersection where motor vehicles and non-motor vehicles are mixed, and buses and cars are obstructed by each other.

     

  • loading
  • [1]
    GAO Fei, GE Yisu, LU Shufang, et al. Online vehicle detection at nighttime-based tail-light pairing with saliency detection in the multi-lane intersection[J]. IET Intelligent Transport Systems, 2019, 13(3): 515-522. doi: 10.1049/iet-its.2018.5197
    [2]
    ZHAO Huijing, WANG Chao, LIN Yuping, et al. On-road vehicle trajectory collection and scene-based lane change analysis: part I[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 18(1): 1-14. http://ieeexplore.ieee.org/document/7515360
    [3]
    杨敏, 裴明涛, 王永杰, 等. 一种基于运动目标检测的视觉车辆跟踪方法[J]. 北京理工大学学报, 2014, 34(4): 370-375. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201404009.htm

    YANG Min, PEI Mingtao, WANG Yongjie, et al. Video-based vehicle tracking based on moving object detection[J]. Transactions of Beijing Institute of Technology, 2014, 34(4): 370-375. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201404009.htm
    [4]
    袁俊. 基于角点SIFT特征匹配的车辆跟踪方法研究[D]. 杭州: 浙江理工大学, 2013.

    YUAN Jun. Study on a new vehicle tracking method based on SIFT features matchment of corners[D]. Hangzhou: Zhejiang Sci-Tech University, 2013. (in Chinese)
    [5]
    刘阳, 王忠立, 蔡伯根, 等. 复杂环境基于多信息融合的车辆跟踪方法[J]. 交通运输系统工程与信息, 2015, 15(6): 74-81. doi: 10.3969/j.issn.1009-6744.2015.06.012

    LIU Yang, WANG Zhongli, CAI Baigen, et al. Multiple information fusion-based vehicle tracking in complex environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(6): 74-81. (in Chinese) doi: 10.3969/j.issn.1009-6744.2015.06.012
    [6]
    王文龙, 李清泉. 基于蒙特卡罗算法的车辆跟踪方法[J]. 测绘学报, 2011, 40(2): 200-203. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201102013.htm

    WANG Wenlong, LI Qingquan. A vehicle tracking algorithm with Monte-Carlo method[J]. Acta Geodaeteca et Cartographica Sinica, 2011, 40(2): 200-203. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201102013.htm
    [7]
    WEN Longyin, CAI Zhaowei, LEI Zhen, et al. Robust online learned spatio-temporal context model for visual tracking[J]. IEEE Transactions on Image Processing, 2014, 23 (2): 785-796. doi: 10.1109/TIP.2013.2293430
    [8]
    周君, 程琳. 基于ST-MRF的自适应车辆跟踪算法研究[J]. 交通运输系统工程与信息, 2013, 13(3): 65-70. doi: 10.3969/j.issn.1009-6744.2013.03.010

    ZHOU Jun, CHENG Lin. Adaptive vehicle tracking algorithm based on ST-MRF model[J]. Journal of Transportation Systems Engineering and Information Technology, 2013, 13(3): 65-70. (in Chinese) doi: 10.3969/j.issn.1009-6744.2013.03.010
    [9]
    周君, 程琳. 基于反向ST-MRF模型的车辆遮挡分割算法[J]. 公路交通科技, 2013, 30(4): 107-111. doi: 10.3969/j.issn.1002-0268.2013.04.019

    ZHOU Jun, CHENG Lin. A segmentation algorithm of vehicle occlusion based on reversed ST-MRF model[J]. Journal of Highway and Transportation Research and Development. 2013, 30(4): 107-111. (in Chinese) doi: 10.3969/j.issn.1002-0268.2013.04.019
    [10]
    周君, 高尚兵, 包旭, 等. 基于ST-MRF模型的电动自行车与汽车交通冲突检测方法: 201611030277.4[P]. 2019-01-22.

    ZHOU Jun, GAO Shangbing, BAO Xu, et al. Traffic conflict detection based on vehicle trajectories of electric bicycles and cars: 201611030277.4[P]. 2019-01-22. (in Chinese)
    [11]
    OLIVERA R, OLIVERA R, VITE O, et al. Application of the three state Kalman filtering for moving vehicle tracking[J]. IEEE Latin America Transactions, 2016, 14 (5) : 2072-2076. doi: 10.1109/TLA.2016.7530397
    [12]
    AHMADI P, TABANDEH M, GHOLAMPOUR I. Abnormal event detection and localisation in traffic videos based on group sparse topical coding[J]. IET Image Processing, 2016, 10(3): 235-246. doi: 10.1049/iet-ipr.2015.0399
    [13]
    侯进辉, 曾焕强, 蔡磊, 等. 基于随机遮挡辅助深度表征学习的车辆再辨识[J]. 控制理论与应用, 2018, 35(12): 1725-1730. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201812004.htm

    HOU Jinhui, ZENG Huanqiang, CAI Lei, et al. Random occlusion assisted deep representation learning for vehicle re-identification[J]. Control Theory & Applications. 2018, 35(12): 1725-1730. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201812004.htm
    [14]
    TALMALE S, UNNIKRISHNAN S, LANDE B K. Distance increasing mapping for variable distance block code[J]. IET Communications, 2020, 14(9): 1495-1501. doi: 10.1049/iet-com.2019.0875
    [15]
    ZAKARIA N J, SHAPIAI M I, FAUZI H, et al. Gradient-based edge effects on lane marking detection using a deep learning-based approach[J]. Arabian Journal for Science and Engineering, 2020(45): 10989-11006. doi: 10.1007/s13369-020-04918-4
    [16]
    张大奇, 曲仕茹, 石爽. 基于序列图像运动分割的车辆边界轮廓提取算法[J]. 交通运输工程学报, 2009, 9(3): 1671-1637. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC200903025.htm

    ZHANG Daqi, QU Shiru, SHI Shuang. Edge detection algorithm of moving vehicle base on sequential image motion segmentation[J]. Journal of Traffic and Transportation Engineering, 2009, 9(3): 1671-1637. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC200903025.htm
    [17]
    CAO Xianbin, LIN Renjun, YAN Pingkun. Visual attention accelerated vehicle detection in low-attitude airborne video of urban environment[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22(3): 366-378. doi: 10.1109/TCSVT.2011.2163443
    [18]
    ELLENRIEDER K D. Dynamic surface control of trajectory tracking marine vehicles with actuator magnitude and rate limits[J]. Automatica, 2019(105): 433-442. http://www.sciencedirect.com/science/article/pii/S0005109819301785
    [19]
    王宇宁, 庞智恒, 袁德明. 基于YOLO算法的车辆实时检测[J]. 武汉理工大学学报, 2016, 38(10): 41-46. doi: 10.3963/j.issn.1671-4431.2016.10.008

    WANG Yuning, PANG Zhiheng, YUAN Deming. Vehicle detection based on YOLO in real time[J]. Journal of Wuhan University of Technology, 2016, 38(10): 41-46. (in Chinese) doi: 10.3963/j.issn.1671-4431.2016.10.008
    [20]
    赖见辉, 王扬, 罗甜甜, 等. 基于YOLO_V3的侧视视频交通流量统计方法与验证[J]. 公路交通科技, 2021, 38(1): 135-142. doi: 10.3969/j.issn.1002-0268.2021.01.017

    LAI Jianhui, WANG Yang, LUO Tiantian, et al. A YOLO_V3 based road-side video traffic volume counting method and verification[J]. Journal of Highway and Transportation Research and Development. 2021, 38(1): 135-142. (in Chinese) doi: 10.3969/j.issn.1002-0268.2021.01.017
    [21]
    徐子睿, 刘猛, 谈雅婷. 基于YOLOv4的车辆检测与流量统计研究[J]. 现代信息科技, 2020(15): 98-100+103. https://www.cnki.com.cn/Article/CJFDTOTAL-XDXK202015031.htm

    XU Zirui, LIU Meng, TAN Yating. Research on vehicle detection and traffic statistics based on YOLOv4[J]. Modern Information Technology, 2020(15): 98-100+103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDXK202015031.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (395) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return