Volume 39 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
WANG Pangwei, FENG Yue, DENG Hui, WANG Yunfeng, WANG Li. A Cooperative Control Model of Continuous Signal Intersections for Connected Vehicles[J]. Journal of Transport Information and Safety, 2021, 39(1): 145-154. doi: 10.3963/j.jssn.1674-4861.2021.01.017
Citation: WANG Pangwei, FENG Yue, DENG Hui, WANG Yunfeng, WANG Li. A Cooperative Control Model of Continuous Signal Intersections for Connected Vehicles[J]. Journal of Transport Information and Safety, 2021, 39(1): 145-154. doi: 10.3963/j.jssn.1674-4861.2021.01.017

A Cooperative Control Model of Continuous Signal Intersections for Connected Vehicles

doi: 10.3963/j.jssn.1674-4861.2021.01.017
  • Received Date: 2020-09-28
  • Publish Date: 2021-02-28
  • Intelligent traffic signal control is an essential means to alleviate traffic congestion. A continuous traffic signal control model based on the upper and lower neural networks is proposed to solve the limitation of the traditional reinforcement learning algorithm at continuous multiple intersections. In this model, the local optimal control strategy in the current state is selected by the lower neural network. Then, the secondary adjustment can be made by the upper neural network according to the delay of vehicles at intersections. A global control strategy is applied to the phase timing of multiple intersections. The model is verified by the SUMO simulation platform, taking three typical continuous intersections as case studies. The average vehicle delay reduces by 23.6% and 26% under low and high saturation, and the queue length reduces by 8.4% and 9.4%. The results show that the road capacity of continuous intersections can be improved based on the proposed model, which provides an effective technical method to alleviate urban traffic congestion.

     

  • loading
  • [1]
    王庞伟, 于洪斌, 张为, 等. 城市车路协同系统下实时交通状态评价方法[J]. 中国公路学报, 2019, 32(6): 176-187. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906019.htm

    WANG Pangwei, YU Hongbin, ZHANG Wei, et al. Real-time traffic state evaluation method under urban vehicle-road collaboration system[J]. China Journal of Highway and Transport, 2019, 32(6): 176-187. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906019.htm
    [2]
    赵盼明, 刘钊, 刘玉, 等. 基于模糊控制的小区域交叉口群过饱和状态信号协调优化[J]. 交通信息与安全, 2018, 36(4): 51-59. doi: 10.3963/j.issn.1674-4861.2018.04.008

    ZHAO Panming, LIU Zhao, LIU Yu, et al. Signal coordination and optimization based on fuzzy control in the supersaturated state of small area intersections[J]. Journal of Transport Information and Safety, 2018, 36(4): 51-59. (in Chinese) doi: 10.3963/j.issn.1674-4861.2018.04.008
    [3]
    SILVER D. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533. doi: 10.1038/nature14236
    [4]
    RAVINDRAN B. Reinforcement learning: ln introduction[J]. IEEETransactionson Neural Networks, 1992, 9(5): 1054-1054.
    [5]
    曹建峰. 分段式优化数解法智能交通绿波带算法[J]. 物联网技术, 2013(8): 82-84. doi: 10.3969/j.issn.2095-1302.2013.08.027

    CAO Jianfeng. Green wave band algorithm for intelligent transportation based on piecewise optimized number solution[J]. Internet of Things Technologies, 2013(8): 82-84. (in Chinese) doi: 10.3969/j.issn.2095-1302.2013.08.027
    [6]
    常玉林, 张其强, 张鹏. 城市干线双向绿波控制优化设计[J]. 重庆理工大学学报(自然科学版), 2014, 28(12): 108-112. doi: 10.3969/j.issn.1674-8425(z).2014.12.021

    CHANG Yulin, ZHANG Qiqiang, ZHANG Peng. Two-way green wave control optimization design of urban trunk lines[J]. Journal of Chongqing University of Technology(Natural Science Edition), 2014, 28(12): 108-112. (in Chinese) doi: 10.3969/j.issn.1674-8425(z).2014.12.021
    [7]
    宋现敏, 张亚南, 马林. 交叉口动态车道与交通信号协同优化方法[J]. 交通运输系统工程与信息, 2020, 20(6): 121-128.

    SONG Xianmin, ZHANG Yanan, MA Lin. Cooperative optimization method of dynamic lane and traffic signal at intersection[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(6): 121-128. (in Chinese)
    [8]
    MOUSAVI S, SCHUKAT M, HOWLEY E. Traffic light control using deep policy-gradient and value-function-based reinforcement learning[J]. Intelligent Transport Systems, 2017, 11(7): 417-423. doi: 10.1049/iet-its.2017.0153
    [9]
    LI L, LYU Yisheng, WANG Feiyue. Traffic signal timing via deep reinforcement learning[J]. CAA Journal of Automatica Sinica, 2016, 3(3): 247-254. doi: 10.1109/JAS.2016.7508798
    [10]
    文峰, 张可新. 基于深度强化学习的交通信号配时优化研究[J]. 沈阳理工大学学报, 2019, 38(1): 48-52+63. https://www.cnki.com.cn/Article/CJFDTOTAL-SGXY201901011.htm

    WEN Feng, ZHANG Kexin. Research on traffic signal timing optimization based on deep reinforcement learning[J]. Journal of Shenyang Ligong University, 2019, 38(1): 48-52 + 63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SGXY201901011.htm
    [11]
    刘义, 何均宏. 强化学习在城市交通信号灯控制方法中的应用[J]. 科技导报, 2019, 37(6): 84-90. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201906013.htm

    LIU Yi, HE Junhong. The application of reinforcement learning in the control method of urban traffic lights[J]. Science & Technology Review, 2019, 37(6): 84-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201906013.htm
    [12]
    XU Ming, WU Jianping, HUANG Ling, et al. Network-wide traffic signal control based on the discovery of critical nodes and deep reinforcement learning[J]. Journal of Intelligent Transportation Systems, 2020, 24(1): 1-10. doi: 10.1080/15472450.2018.1527694
    [13]
    TOUHBI S, BABRAM M A, NGUYEN-HUU T, et al. Adaptive traffic signal control: exploring reward definition for reinforcement learning[J]. Procedia Computer Science, 2017(109): 513-520. http://www.sciencedirect.com/science/article/pii/S1877050917309912
    [14]
    WU Yuankai, TAN Huachun, PENG Jiankun, et al. Deep reinforcement learning of energy management with continuous control strategy and traffic information for aseries-parallel plugin hybrid electric bus[J]. Applied Energy, 2019(247): 454-466. http://www.sciencedirect.com/science/article/pii/S030626191930652X
    [15]
    AREL I, LIU C, URBANIK T, et al. Reinforcement learning-based multi-agent system for network traffic signal control[J]. IET Intelligent Transport Systems, 2010, 4(2): 128-135. doi: 10.1049/iet-its.2009.0070
    [16]
    JIN J, MA X, KOSONEN I. An Intelligent control system for traffic lights with simulation-based evaluation[J]. Control Engineering Practice, 2017(58): 24-33. http://www.sciencedirect.com/science/article/pii/S096706611630212X
    [17]
    ZHAO Dongbin, DAI Yujie, ZHANG Zhen. Computational intelligence in urban traffic signal control: Asurvey[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2011, 42(4): 485-494. http://ieeexplore.ieee.org/document/5978226
    [18]
    WAN Chiahao, HWANG Mingchorng. Value-based deep reinforcement learning for adaptive isolated intersectionsignal control[J]. IET Intelligent Transport Systems, 2018, 12(9): 1005-1010. doi: 10.1049/iet-its.2018.5170
    [19]
    TAN Tian, BAO Feng, DENG Yue, et al. Cooperative deep reinforcement learning for large-scale traffic grid signal control[J]. IEEE Transactions on Cybernetics, 2019, 50(6): 2687-2700. http://ieeexplore.ieee.org/document/8676356
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(5)

    Article Metrics

    Article views (968) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return