Volume 39 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
YAN Hao, LIU Xiaozhu, SHI Ying. Lane-change Control for Unmanned Vehicle Based on REINFORCE Algorithm and Neural Network[J]. Journal of Transport Information and Safety, 2021, 39(1): 164-172. doi: 10.3963/j.jssn.1674-4861.2021.01.0019
Citation: YAN Hao, LIU Xiaozhu, SHI Ying. Lane-change Control for Unmanned Vehicle Based on REINFORCE Algorithm and Neural Network[J]. Journal of Transport Information and Safety, 2021, 39(1): 164-172. doi: 10.3963/j.jssn.1674-4861.2021.01.0019

Lane-change Control for Unmanned Vehicle Based on REINFORCE Algorithm and Neural Network

doi: 10.3963/j.jssn.1674-4861.2021.01.0019
  • Received Date: 2020-09-25
  • Publish Date: 2021-02-28
  • For lane change and overtaking of unmanned vehicles, the paper studies the lane change control strategy of unmanned vehicles based on the REINFORCE algorithm and neural network. The feedback, control input, and output limit requirement of the vehicle dynamics model are determined. The REINFORCE algorithm is used to design the structure of the neural network controller and the training plan of the controller. For too large data value and variance of the experience pool, a preprocessing method of the experience pool data is proposed to improve the controller training plan. Besides analyzing sparse reward distribution in the reinforcement learning process, a reward shaping solution based on logarithmic function is proposed combined with the running condition of unmanned vehicles. Compared with PID and LQR controllers, the experiment is carried out. The results show that the proposed control strategy has smaller maximum error compared with PID, with a safer lane-change process. The performance of the control strategy is similar to LQR, which proves its feasibility for the lane change control task of unmanned vehicles. Also, the execution time of the control strategy in different platforms is recorded to prove its real-time performance and feasibility in lightweight platforms.

     

  • loading
  • [1]
    AHN S, CASSIDY M J. Freeway traffic oscillations and vehicle lane change Maneuvers[C]. 17th International Sympo-sium on Transportation & Traffic Theory, London: Elsevier, 2007.
    [2]
    邱少林, 钱立军, 陆建辉. 基于最优预瞄的智能车变道控制[J]. 中国机械工程, 2019, 30(23): 2778-2783. doi: 10.3969/j.issn.1004-132X.2019.23.002

    QIU Shaolin, QIAN Lijun, LU Jianhui. Lane-change control for intelligent vehicles based on optimal preview[J]. China Mechanical Engineering, 2019, 30(23): 2778-2783. (in Chinese) doi: 10.3969/j.issn.1004-132X.2019.23.002
    [3]
    林小宁, 顾筠, 沈峘. 车辆自主快速变道的轨迹规划与跟踪控制[J]. 兰州理工大学学报, 2017, 43(6): 108-112. doi: 10.3969/j.issn.1673-5196.2017.06.021

    LIN Xiaoning, GU Jun, SHEN Huan. Trajectory planning and follow up controling of vehicle autonomous fast lane change[J]. Journal of Lanzhou University of Technology, 2017, 43(6): 108-112. (in Chinese) doi: 10.3969/j.issn.1673-5196.2017.06.021
    [4]
    PENG Tao, SU Lili, ZHANG Ronghui. A new safe lane-change trajectory model and collision avoidance control method for automatic driving vehicles[J]. Expert Systems with Applications, 2019, 141: 112953. http://www.sciencedirect.com/science/article/pii/S0957417419306712
    [5]
    HU Jianjun, XIONG Songsong, ZHA Junlin, FU Chunyun. Lane detection and trajectory tracking control of autonomous vehicle based on model predictive control[J]. International Journal of Automotive Technology, 2020, 20(2): 285-295. doi: 10.1007/s12239-020-0027-6
    [6]
    WU Xiaodong, QIAO Bangjun, SU Chengrui. Trajectory planning with time-variant safety margin for autonomous vehicle lane change[J]. Applied Sciences-Basel, 2020, 10(5): 16-26. http://www.researchgate.net/publication/339622745_Trajectory_Planning_with_Time-Variant_Safety_Margin_for_Autonomous_Vehicle_Lane_Change
    [7]
    聂枝根, 王万琼, 赵伟强, 等. 基于轨迹预瞄的智能汽车变道动态轨迹规划与跟踪控制[J]. 交通运输工程学报, 2020, 20(2): 147-160. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202002012.htm

    NIE Zhigen, WANG Wanqiong, ZHAO Weiqiang, et al. Dynamic trajectory planning and tracking control for lane change of intelligent vehicle based on trajectory preview[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 147-160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202002012.htm
    [8]
    蔡英凤, 秦顺琪, 臧勇, 等. 基于可拓优度评价的智能汽车横向轨迹跟踪控制方法[J]. 汽车工程, 2019, 41(10): 1189-1196. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201910012.htm

    CAI Yingfeng, QIN Shunqi, ZHANG Yong, et al. Lateral trajectory tracking control scheme for intelligent vehicle based on extension goodness evaluation[J]. Automotive Engineering, 2019, 41(10): 1189-1196. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201910012.htm
    [9]
    白成盼, 惠飞, 景首才. 基于微分平坦与MPC的智能车换道控制算法[J]. 计算机技术与发展, 2020, 30(5): 16-20. doi: 10.3969/j.issn.1673-629X.2020.05.004

    BAI Chengpan, GU Fei, JING Shoucai. Intelligent car lane change control algorithm based on differential flatness and MPC[J]. Computer Technology and Development, 2020, 30(5): 16-20. (in Chinese) doi: 10.3969/j.issn.1673-629X.2020.05.004
    [10]
    刘洋. 智能车辆高速公路自动变道轨迹规划与控制研究[D]. 长春: 吉林大学, 2019.

    LIU Yang. Research on the trajectory planning and control for automatic lane change of intelligent vehicles on highway[D]. Changchun: Jilin University, 2019. (in Chinese)
    [11]
    张家旭, 施正堂, 赵健, 等. 基于Radau伪谱法的汽车高速紧急换道避障最优控制策略设计[J]. 汽车工程, 2020, 42 (8): 1040-1049. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202008008.htm

    ZHANG Jiaxu, SHI Zhengtang, ZHAO Jian, et al. Optimal control strategy design for vehicle high-speed emergency lane change collision avoidance based on Radau pseudospectral method[J]. Auto-motive Engineering, 2020, 42(8): 1040-1049. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202008008.htm
    [12]
    任彧, 赵师涛. 磁导航AGV深度强化学习路径跟踪控制方法[J]. 杭州电子科技大学学报(自然科学版), 2019, 39(2): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-HXDY201902006.htm

    REN Yu, ZHAO Shitao. Deep reinforcement learning based path following control of magnetic navigation AGV[J]. Journal of Hangzhou Dianzi University(Natural Sciences), 2019, 39(2): 28-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HXDY201902006.htm
    [13]
    赵师涛. 基于强化学习的磁导航AGV控制方法研究[D]. 杭州: 杭州电子科技大学, 2018.

    ZHAO Shitao. Research on Reinforcement Learning based control method of magnetic navigation AGV[D]. Hangzhou: Hangzhou Dianzi University, 2018. (in Chinese)
    [14]
    ANDREAS B, ANASTASIOS M. Straightpath following for underactuated Marine vessels using deep Reinforcement Learning[J]. IFAC-Papers OnLine, 2018, 51(29): 329-334. doi: 10.1016/j.ifacol.2018.09.502
    [15]
    WANG Shuti, YING Xunhe, LI Peng, et al. Trajectory tracking control for mobile robots using reinforcement learning and PID[J]. Iranian Journal of Science and Technology Transations of Electrcal Engineering, 2020, 44(2): 1031-1041. doi: 10.1007/s40998-020-00311-x
    [16]
    PACEJKA H B. Tyre and vehicle dynamics[M]. 2nd Ed. Burlington: butter-worth-heinemann, 2006.
    [17]
    龚建伟, 姜岩, 徐威. 无人驾驶车辆模型预测控制[M]. 北京: 北京理工大学出版社, 2014.

    GONG Jianwei, JIANG Yan, Xu Wei. Model predictive control for self-driving vehicles[M]. Beijing: Beijing Institute of Techno- logy Press. (in Chinese)
    [18]
    理查德·萨顿, 安德鲁·巴图. 强化学习[M]. 2版. 北京: 电子工业出版社, 2019.

    RICHARD S. Sutton, ANDREW G. Barto. Reinforcement Learning: an introducetion[M]. 2ed. Beijing: Electronic Industry Press, 2019. (in Chinese)
    [19]
    中华人民共和国住房和城乡建设部. 城市快速路设计规程: CJJ 129—2009[S]. 北京: 中国建筑工业出版社, 2009.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Specification for design of urban expressway: CJJ 129—2009[S]. Beijing: China Architecture & Building Press, 2009. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article views (949) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return