Longitudinal Operational Characteristics of Cars between Small-spacing Interchanges on Freeway
-
摘要: 为明确车辆在高速公路小净距互通立交的纵向运行特性,在G50沪渝高速公路重庆段的白杨沟立交和跑马坪立交,开展了38位被试的实车驾驶试验。利用车载仪器采集了自然驾驶状态下的车辆运行速度以及纵向加速度等参数,计算了速度极差、带宽以及聚集系数,分析了驾驶行为的约束性以及速度变化特征。提取了纵向加速度连续变化曲线的峰值,研究了纵向加速度的累积频率、概率分布特性以及特征百分位值。结果表明:在小净距区段,合流区与分流区相互重叠,车辆交织行为增多,车辆间干涉严重,速度极差较大,离散性较高;断面速度总体呈现偏态分布,小净距区段断面速度区间大于其它断面。纵向加速概率分布曲线总体呈现偏态分布,加速度负值分布区间大于正值分布区间;小净距区段交通环境相对更复杂,驾驶人操作更加谨慎,与常规净距立交相比,小净距立交纵向加速度平均值低0.28 m/s2。汇入过程中,驾驶人对加速度的选择存在一定差异,偏向于较大的加速度正值(0.542 m/s2)与较低的加速度负值(-0.081 m/s2)。然而,驶出过程中,驾驶人对加速度的选择具有一定趋同性,加速度正值(0.300 m/s2)与负值(-0.350 m/s2)差异性小;男性驾驶人纵向操作频率高于女性,幅度低于女性,不同驾驶风格驾驶人纵向加速度变化趋势具有一定的趋同性。Abstract: To clarify vehicles'characteristics of longitudinal operation between small-spacing interchanges (SSI) on freeways, a field test with 38 subjects is conducted at Baiyanggou Interchange and Paomaping Interchange in the Chongqing section of the G50 Shanghai-Chongqing Freeway. The onboard instruments collected operational data such as speed and longitudinal acceleration under natural-driving state. Then, the speed range, speed bandwidth, and aggregation coefficient are calculated to analyze the constraints of driving behavior and the characteristics of speed change. Finally, the cumulative frequency, probability distribution, and percentile values are investigated after extracting the peak value of each waveform of the longitudinal acceleration curve. The findings are as follows: In the SSI section, the merging and diverging zones tend to overlap, leading to a great degree of vehicle weaving and interference. Consequently, these areas are marked by a more significant difference of vehicle speed and a heightened degree of dispersion. The cross-sectional velocities typically exhibit a skewed distribution, with the speed range in the SSI being greater than that in other sections. Similarly, the longitudinal acceleration generally displays a skewed distribution, wherein the interval of acceleration negative value exceeds that of positive value. Traffic conditions in the SSI are notably complex, necessitating careful maneuver by drivers. Comparing to the normal-spacing interchanges, the average acceleration decreases by 0.28 m/s2 in SSI. In the process of merging, drivers exhibit variability in their preferences for acceleration, with a notable inclination towards higher acceleration positive value (0.542 m/s2) and lower acceleration negative value (-0.081 m/s2). Contrarily, in the process of exiting, drivers demonstrate a certain level of uniformity in their choice of acceleration rates, with minor disparities between the acceleration positive value (0.300 m/s2) and negative value (-0.350 m/s2) rates. Male drivers engage in longitudinal maneuver with a higher frequency than female drivers, albeit at a lower amplitude. Across different driving styles, a certain level of uniformity is observed in the trend of longitudinal acceleration changes.
-
Key words:
- traffic engineering /
- small-spacing interchange /
- driving behavior /
- expressway /
- speed /
- acceleration
-
表 1 汇入阶段纵向加速度统计值和特征分位值
Table 1. Longitudinal acceleration statistics and characteristic quantiles in entry stage
单位: m/s2 参数类别 加速度 减速度 均值 0.467 0.398 最大值 1.962 2.041 第10%分位值 0.148 0.021 第15%分位值 0.191 0.037 第25%分位值 0.274 0.093 第50%分位值 0.448 0.244 第75%分位值 0.583 0.584 第85%分位值 0.697 0.899 第90%分位值 0.822 1.015 第95%分位值 0.973 1.175 表 2 驶出阶段纵向加速度统计值和特征分位值
Table 2. Longitudinal acceleration statistics and characteristic quantiles in exit stage
单位: m/s2 参数类别 加速度 减速度 均值 0.162 0.256 最大值 0.688 1.484 第10%分位值 0.021 0.026 第15%分位值 0.027 0.047 第25%分位值 0.053 0.084 第50%分位值 0.115 0.209 第75%分位值 0.23 0.368 第85%分位值 0.278 0.452 第90%分位值 0.327 0.516 第95%分位值 0.344 0.58 -
[1] CHEN H Y, LIU P, LU J, et al. Evaluating the safety impacts of the number and arrangement of lanes on freeway exit ramps[J]. AccidentAnalysis & Prevention, 2009, 41(3): 543-551. http://www.onacademic.com/detail/journal_1000034048046510_2753.html [2] MCCARTT A T, NORTHRUP V S, RETTING R A. Types and characteristics of ramp-related motor vehicle crashes on urban interstate roadways in Northern Virginia[J]. Journal of Safety Research, 2004, 35(1): 107-114. doi: 10.1016/j.jsr.2003.09.019 [3] 胡江碧, 何禄成, 王荣华, 等. 高速公路互通立交安全性评价研究综述[J]. 中国公路学报, 2020, 33(7): 17-28. doi: 10.3969/j.issn.1001-7372.2020.07.002HU J B, HE L C, WANG R H, et al. Review of safety evaluation of freeway interchange[J]. China Journal of Highway and Transport, 2020, 33(7): 17-28. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.07.002 [4] WANG Y P, XU J, LIU X L, et al. Analysis on risk characteristics of traffic accidents in small-spacing expressway interchange[J]. International Journal of Environmental Research and Public Health, 2022, 19(16): 9938. doi: 10.3390/ijerph19169938 [5] 徐进, 崔强, 常旭, 等. 苜蓿叶形互通立交进/出口的纵向驾驶行为特征[J]. 东南大学学报(自然科学版), 2019, 49(6): 1205-1214.XU J, CUI Q, CHANG X, et al. Characteristics of longitudinal driving behavior in and out of alfalfa leaf-shaped interchange[J]. Journal of Southeast University (Natural Science Edition), 2019, 49(6): 1205-1214. (in Chinese) [6] 张智勇, 郝晓云, 吴文斌, 等. 互通立交匝道运行速度预测模型[J]. 交通运输系统工程与信息, 2015, 15(1): 93-99. doi: 10.3969/j.issn.1009-6744.2015.01.017ZHANG Z Y, HAO X Y, WU W B, et al. Interchange ramp speed prediction model[J]. Transportation Systems Engineering and Information, 2015, 15(1): 93-99. (in Chinese) doi: 10.3969/j.issn.1009-6744.2015.01.017 [7] 张驰, 宫权利, 马向南, 等. 互通立交单车道入口小客车运行速度模型[J]. 长安大学学报(自然科学版), 2018, 38(4): 71-79. doi: 10.3969/j.issn.1671-8879.2018.04.009ZHANG C, GONG Q L, MA X N, et al. Running speed model of passenger car at single lane entrance of interchange[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38(4): 71-79. (in Chinese) doi: 10.3969/j.issn.1671-8879.2018.04.009 [8] BOSETTI P, DA LIO M, SAROLDI A. On curve negotiation: from driver support to automation[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(4): 2082-2093. doi: 10.1109/TITS.2015.2395819 [9] FANG F C, ELEFTERIADOU L. Some guidelines for selecting micro simulation models for interchange traffic operational analysis[J]. Journal of Transportation Engineering, 2005, 131(7): 535-543. doi: 10.1061/(ASCE)0733-947X(2005)131:7(535) [10] 侯珊珊, 张杰, 张雪榆, 等. 考虑驾驶风格的高密度立交群出入口车辆驾驶风险研究[J]. 科学技术与工程, 2024, 24(10): 4317-4328. doi: 10.12404/j.issn.1671-1815.2301892HOU S S, ZHANG J, ZHANG X Y, et al. Investigation on the driving risk of high-density over-exchange group vehicles considering driving style[J]. Science Technology and Engineering, 2024, 24(10): 4317-4328. (in Chinese) doi: 10.12404/j.issn.1671-1815.2301892 [11] 林伟. 基于自然驾驶的互通立交匝道横向加速度特性研究[D]. 重庆: 重庆交通大学, 2018.LIN W. Study on lateral acceleration characteristics of interchange ramp based on natural driving[D]. Chongqing: Chongqing Jiaotong University, 2018. (in Chinese) [12] 崔强. 基于自然驾驶的互通立交匝道纵向运行特性研究[D]. 重庆: 重庆交通大学, 2018.CUI Q. The longitudinal operating characteristics of the interchange ramps based on naturalistic driving study[D]. Chongqing: Chongqing Jiaotong University, 2018. (in Chinese) [13] 窦同乐, 向健, 徐进. 苜蓿叶形立交行驶安全性与舒适性仿真研究[J]. 中国科技论文, 2020, 15(2): 201-207. doi: 10.3969/j.issn.2095-2783.2020.02.011DOU T L, XIANG J, XU J. Research on safety and comfort of clover-shaped interchange by virtual experiment[J]. China Science Paper, 2020, 15(2): 201-207. (in Chinese) doi: 10.3969/j.issn.2095-2783.2020.02.011 [14] 刘俊. 基于实车试验的互通立交匝道小客车加速度特性研究[D]. 重庆: 重庆交通大学, 2020.LIU J. Study acceleration characteristics of interchange ramp based on vehicle road test[D]. Chongqing: Chongqing Jiaotong University, 2020. (in Chinese) [15] YAMAKADO M, ABE M. An experimentally confirmed driver longitudinal acceleration control model combined with vehicle lateral motion[J]. Vehicle System Dynamics, 2008, 46(S1): 129-149. [16] EBOLI L, MAZZULLA G, PUNGILLO G. Combining speed and acceleration to define car users'safe or unsafe driving behaviour[J]. Transportation Research Part C: Emerging Technologics, 2016(68): 113-125. [17] LIU J, KHATTAK A J. Delivering improved alerts, warnings, and control assistance using basic safety messages transmitted between connected vehicles[J]. Transportation Research Part C: Emerging Technologics, 2016(68): 83-100. [18] DERBEL O, LANDRY R J. Driver behavior assessment based on the G-G diagram in the DVE system[J]. IFAC-PapersOnLine, 2016, 49(11): 89-94. doi: 10.1016/j.ifacol.2016.08.014 [19] 徐进, 孙子秋, 王思棋, 等. 高密度互通立交出口匝道驾驶人视觉搜索行为特征[J]. 东南大学学报(自然科学版), 2022, 52(6): 1189-1198.XU J, SUN Z Q, WANG S Q, et al. Characteristics of driver's visual search behavior in exit ramp of high-density interchanges[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(6): 1189-1198. (in Chinese) [20] 徐进, 杨雪敏, 张雪榆, 等. 基于自然驾驶数据的高密度立交出入口车辆轨迹特征研究[J]. 交通信息与安全, 2023, 41(6): 20-31. doi: 10.3963/j.jssn.1674-4861.2023.06.003XU J, YANG X M, ZHANG X Y, et al. An investigation on vehicle trajectory characteristics at exit and entrance of high-density interchanges based on naturalistic driving data[J]. Journal of Transport Information and Safety, 2023, 41(6): 20-31. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.06.003 [21] 杨迪. 高密度互通立交出入口驾驶人精神负荷研究[D]. 重庆: 重庆交通大学, 2022.YANG D. Study on driver's mental workload at the entrance and exit of high-density interchange[D]. Chongqing: Chongqing Jiaotong University, 2022. (in Chinese) [22] 徐进, 潘存书, 符经厚, 等. 典型道路场景以及场景切换时的速度行为特性[J]. 吉林大学学报(工学版), 2021, 51(4): 1331-1341.XU J, PAN C S, FU J H, et al. Speed behavior characteristic on typical driving scenarios and along switched scenarios[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(4): 1331-1341. (in Chinese)