留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑智能网联汽车通信延时的混合交通流稳定性分析

张璐 张兆磊 刘至真 唐峰

张璐, 张兆磊, 刘至真, 唐峰. 考虑智能网联汽车通信延时的混合交通流稳定性分析[J]. 交通信息与安全, 2024, 42(2): 95-104. doi: 10.3963/j.jssn.1674-4861.2024.02.010
引用本文: 张璐, 张兆磊, 刘至真, 唐峰. 考虑智能网联汽车通信延时的混合交通流稳定性分析[J]. 交通信息与安全, 2024, 42(2): 95-104. doi: 10.3963/j.jssn.1674-4861.2024.02.010
ZHANG Lu, ZHANG Zhaolei, LIU Zhizhen, TANG Feng. A Stability Analysis of Mixed Traffic Flows Considering Communication Delay of Connected and Autonomous Vehicles[J]. Journal of Transport Information and Safety, 2024, 42(2): 95-104. doi: 10.3963/j.jssn.1674-4861.2024.02.010
Citation: ZHANG Lu, ZHANG Zhaolei, LIU Zhizhen, TANG Feng. A Stability Analysis of Mixed Traffic Flows Considering Communication Delay of Connected and Autonomous Vehicles[J]. Journal of Transport Information and Safety, 2024, 42(2): 95-104. doi: 10.3963/j.jssn.1674-4861.2024.02.010

考虑智能网联汽车通信延时的混合交通流稳定性分析

doi: 10.3963/j.jssn.1674-4861.2024.02.010
基金项目: 

国家自然科学基金青年项目 52302385

湖南省重点研发计划项目 2023SK2052

详细信息
    作者简介:

    张璐(2000—),硕士研究生. 研究方向:交通流稳定性. E-mail:21101030103@stu.csust.edu.cn

    通讯作者:

    刘至真(1995—),博士,讲师. 研究方向:车路协同、交通流理论等. E-mail:zhizhenliu@csust.edu.cn

  • 中图分类号: U491.2+62

A Stability Analysis of Mixed Traffic Flows Considering Communication Delay of Connected and Autonomous Vehicles

  • 摘要: 针对交通系统中微小扰动所诱发的车流不稳定现象以及车辆频繁启停问题,充分考虑智能网联汽车(connected and autonomous vehicle,CAV)的通信延时,对适用于混合交通流环境的扰动抑制方法展开了深入探寻。通过对CAV信息传递延时、不同渗透率、CAV编队强度等多重因素进行综合分析,探索了通信对混合交通流稳定性的影响机制。考虑最大编队车辆数并基于马尔可夫链构建混合流稳定性分析模型,得到了不同车头时距类型的生成概率,在此基础上构建了混合交通流的稳定性判别公式以分析不同条件下的车流速度稳定区域。为提高CAV通信效率借助了路侧单元传递信息。根据车路通信流向不同,将通信过程分为车端-路端的上行通信和路端-车端的下行通信,构建了低交通密度下的信息传递延时估计模型,得到不同CAV渗透率及编队强度下的延时估计值,以分析其对交通流稳定性影响。为验证分析结果开展了扰动演化的仿真实验,结果表明:①CAV渗透率与编队强度有利于混合交通流稳定性,而通信延时对交通流稳定性有负影响;②通信延时随着CAV渗透率与编队强度、路侧单元与CAV通信半径的增大而减小;③当最大编队车辆数为6且混合流以25 m/s的稳态速度行驶时,只有CAV渗透率达到60%或编队强度大于0.5,延时才小于0.3 s且扰动得到有效抑制。

     

  • 图  1  混合交通流中的5种车辆跟驰类型与编队强度示意

    Figure  1.  Illustration of the five car following types and platooning intensity in mixed traffic

    图  2  部署有路侧单元的高速公路研究场景

    Figure  2.  Highway study scenario with roadside units deployed

    图  3  V2X延时敏感性分析

    Figure  3.  Sensitivity analysis of V2X delivery delay

    图  4  混合流稳定性(N=6)

    Figure  4.  The stability of mixed traffic flow(N=6)

    图  5  混合车队中跟驰模型选取逻辑图

    Figure  5.  Logic diagram for the selection of car-following model in mixed flow

    图  6  V2X通信下混合交通流的速度波动随pA变化(N = 6,O = 0.5)

    Figure  6.  The velocity fluctuation of mixed traffic flow varies with pA under V2X communication

    图  7  N =6,pA =50%时混合流速度随O变化

    Figure  7.  The velocity fluctuation of mixed traffic flow varies with O under N =6, pA =50%

    表  1  不同pA水平下混合流不稳定速度范围(N =6,O =0.5)

    Table  1.   Unstable velocity range of mixed flow at different pA levels(N =6, O =0.5)

    CAV渗透率 不稳定速度范围/(m/s)
    0.1 0.3~28.2
    0.2 0.3~33
    0.3 0.3~33
    0.4 0.4~33
    0.5 0.4~27.1
    0.6 0.4~21.9
    0.7 0.6~12.1
    0.8 恒稳定
    0.9 恒稳定
    下载: 导出CSV
  • [1] GYAWALI S, XU S, QIAN Y, et al. Challenges and solutions for cellular based V2X communications[J]. IEEE Communications Surveys & Tutorials, 2021, 23(1): 222-255.
    [2] 蒋阳升, 胡蓉, 姚志洪, 等. 智能网联车环境下异质交通流稳定性及安全性分析[J]. 北京交通大学学报, 2020, 44(1): 27-33.

    JIANG Y S, HU R, YAO Z H, et al. Stability and safety analysis for heterogeneous traffic flow composed of intelligent and connected vehicles[J]. Journal of Beijing Jiaotong University, 2020, 44(1): 27-33. (in Chinese)
    [3] JIN S, SUN D H, ZHAO M, et al. Modeling and stability analysis of mixed traffic with conventional and connected automated vehicles from cyber physical perspective[J]. Physica A: Statistical Mechanics and its Applications, 2020, 551(1): 124217-124230.
    [4] 吴兵, 王文璇, 李林波, 等. 多前车影响的智能网联车辆纵向控制模型[J]. 交通运输工程学报, 2020, 20(2): 184-194.

    WU B, WANG W X, LI L B, et al. Longitudinal control model for connected autonomous vehicles influenced by multiple preceding vehicles[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 184-194. (in Chinese)
    [5] QIN Y Y, WANG H. Stabilizing mixed cooperative adaptive cruise control traffic flow to balance capacity using car-following model[J]. Journal of Intelligent Transportation Systems, 2023, 27(1): 57-79. doi: 10.1080/15472450.2021.1985490
    [6] 单肖年, 万长薪, 李志斌, 等. 智能网联环境下多车道异质交通流建模与仿真[J]. 交通运输系统工程与信息, 2022, 22 (6): 74-84.

    SHAN X N, WAN C X, LI Z B, et al. Modeling and simulation of multi-lane heterogeneous traffic flow in intelligent and connected vehicle environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(6): 74-84. (in Chinese)
    [7] ZHOU J, ZHU F. Analytical analysis of the effect of maximum platoon size of connected and automated vehicles[J]. Transportation Research Part C: Emerging Technologies, 2021, 122(1): 102882-1028102.
    [8] ZHANG Y C, ZHAO M, SUN D H, et al. Analysis of mixed traffic with connected and non-connected vehicles based on lattice hydrodynamic model[J]. Communications in Nonlinear Science & Numerical Simulation, 2021, 94(4): 105541-105562.
    [9] YAO Z, JIANG Y, HU R, et al. Stability and safety evaluation of mixed traffic flow with connected automated vehicles on expressways[J]. Journal of Safety Research, 2020, 75(1): 262-274.
    [10] CHANG X, LI H, RONG J, et al. Analysis on traffic stability and capacity for mixed traffic flow with platoons of intelligent connected vehicles[J]. Physica A: Statistical Mechanics and its Applications, 2020, 557(1): 124829-124842.
    [11] GHIASI A, HUSSAIN O, QIAN Z S, et al. A mixed traffic capacity analysis and lane management model for connected automated vehicles: a Markov chain method[J]. Transportation Research Part B: Methodological, 2017, 106(12): 266-292.
    [12] LI L, GAN J, QU X, et al. Stability and environmental analysis of mixed traffic flow-using the Markov probabilistic theory[J]. Promet-Traffic & Transportation, 2020, 32(6): 849-861.
    [13] 秦严严, 罗钦中, 贺正冰. 网联自动驾驶车辆混合交通流专用道管控方法[J]. 交通运输工程学报, 2023, 23(3): 221-231.

    QIN Y Y, LUO Q Z, HE Z B. Management and control method of dedicated lanes for mixed traffic flows with connected and automated vehicles[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 221-231. (in Chinese)
    [14] 秦严严, 陈凌志. 混有智能辅助驾驶车队的混合车流通行能力分析[J]. 重庆交通大学学报(自然科学版), 2022, 41 (12): 1-10.

    QIN Y Y, CHEN L Z. Traffic capacity of traffic flow mixed with intelligent assistant driving vehicle platoons[J]. Journal of Chongqing Jiaotong University(Natural Science), 2022, 41(12): 1-10. (in Chinese)
    [15] NGODUY D, LI T. Hopf bifurcation structure of a generic car-following model with multiple time delays[J]. Transportmetrica A: Transport Science, 2021, 17(4): 878-896.
    [16] 李永福, 何昌鹏, 朱浩, 等. 通信延时环境下异质网联车辆队列非线性纵向控制[J]. 自动化学报, 2021, 47(12): 2841-2856.

    LI Y F, HE C P, ZHU H, et al. Nonlinear longitudinal control for heterogeneous connected vehicle platoon in the presence of communication delays[J]. Acta Automatica Sinica, 2021, 47(12): 2841-2856. (in Chinese)
    [17] JIA D, NGODUY D, VU H. A multiclass microscopic model for heterogeneous platoon with vehicle-to-vehicle communication[J]. Transportmetrica B, 2019, 7(1): 311-335.
    [18] JIA D, NGODUY D. Enhanced cooperative car-following traffic model with the combination ofV2VandV2I communication[J]. Transportation Research Part B: Methodological, 2016, 90(1): 172-191.
    [19] JIA D, NGODUY D. Platoon based cooperative driving model with consideration of realistic inter-vehicle communication[J]. Transportation Research Part C: Emerging Technologies, 2016, 68(1): 245-264.
    [20] 于冲, 赵海, 司帅宗, 等. 考虑通信延时的platoon跟车控制模型[J]. 控制与决策, 2019, 34(2): 377-382.

    YU C, ZHAO H, SI S Z, et al. Vehicle following control model of platoon considering communication delay[J]. Control and Decision, 2019, 34(2): 377-382. (in Chinese)
    [21] GUO C, LI D, CHEN X, et al. An adaptive V2R communication strategy based on data delivery delay estimation in VANETs[J]. Vehicular Communications, 2022, 34(1): 100444-100457.
    [22] 叶青, 赵聪, 朱逸凡, 等. 面向自动驾驶的车路协同感知点云融合模式时延影响分析[J]. 交通信息与安全, 2023, 41 (4): 72-79.

    YE Q, ZHAO C, ZHU Y F, et al. An analysis of the impact of time delay of fusion modes for point clouds from cooperative road vehicle systems on autonomous driving[J]. Journal of Transport Information and Safety, 2023, 41(4): 72-79. (in Chinese)
    [23] MILANES V, SHLADOVER S E. Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data[J]. Transportation Research Part C: Emerging Technologies, 2014, 48(1): 285-300.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  137
  • HTML全文浏览量:  74
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-27
  • 网络出版日期:  2024-09-14

目录

    /

    返回文章
    返回