Complex Network Modeling and the Ephemeral Characteristics of Dynamic Opportunistic Interconnections Among Vessels in Inland Waterway
-
摘要: 针对内河船舶间出现时空邻近的机会性现象开展建模及实证研究。在社会网络分析方法的基础上,提出了1种考虑时序特征的网络分析方法,将大尺度时间跨度上的网络聚类转化为小尺度跨度上的网络聚类,进而分析内河船舶在有限水域内的动态行为;考察船舶间形成邻近关系网络的时变特征,利用复杂网络表示船舶社会网络随时间的演化特性,并借助复杂网络模型对内河水域内存在较多互相熟识船舶的现象给出统计解释。基于长江下游200 km河段1个月的AIS数据,按时隙划分得到网络模型的序列,由此表现船舶间发生单跳数据交换关系的互联形态。实证结果表明:①船舶联网瞬时的度分布可用高斯分布拟合,拟合度在96%以上;②随着时间尺度的增加船舶社会网络的小世界特性和无标度特征愈加明显,网络形态在空间维度上呈现簇团情形,局部密集的组团网络由大部分静止和少量运动船舶连接起来,网络密度随时间缓慢增加至0.1左右,相对平均路径长度稳定在0.2~0.3之间,平均赋权集聚系数呈现缓慢下降的趋势最后趋于0.4~0.5,离散度较快趋向于1,并实现整体上的连通;③度值较高的船舶节点,其平均速度在不同时隙的船舶社会网络中分时段呈现相关性;④相对于船舶密度的增加,船舶在1 d内的平均友邻时间以指数形式递增,而船舶的重复相遇近似服从负指数分布。上述结果表明,内河船舶航行中数据交换关系的建立或断开是由物理空间中船舶间邻近关系的时变性决定的;内河船舶的历史交互行为对未来交互行为具有记忆性并产生影响。Abstract: This paper empirically studies the opportunistic proximity among inland vessels. A social network analysis (SNA) method considering time-series characteristics is proposed based on the original SNA method, which transforms the network clustering with a large-scale time span into that with a small-scale span and could be used to analyze the dynamic behaviors of inland vessels in limited waters; additionally, considering the temporal characteristics of the proximity relationships among vessels, the complex network theory is employed to model the vessel social network (VSN), which explains the fact that many encountering ships are acquainted with each other in inland region. The AIS data from a 200-kilometer section of the lower Yangtze River in one month are used for demonstration. The results show that: ① the degree distribution of the VSN can be fitted with a Gaussian distribution with a fitting degree of over 96%; ② with the increase of time scale, small-world characteristics and scale-free features of the VSN become apparent, clusters sub-networks consisting of stationary vessels and sailing vessels are observed in the spatial dimension, the density of the VSN slowly increase to 0.1, the average path remains 0.2-0.3, the average weighted clustering coefficient slowly decreases and converges to 0.4-0.5, the dispersion rapidly approaches 1, and overall connectivity is achieved; ③ the average speed of the ships who have high degrees in the VSN with different time spans are highly correlated; ④ with the increase of vessel density, the average neighborhood time in 1 day grows exponentially and the repeated encounters fit a negative exponential distribution. In summary, the establishment or disconnection of data exchange relationships among sailing ships is determined by the ephemeral characteristics of the proximity relationships between vessels in physical space; the interaction behaviors of inland vessels have a memory effect on the interaction behaviors in the future, providing new insights for the research of inland traffic safety.
-
表 1 船联网节点度分布最优高斯拟合参数
Table 1. Optimal gaussian fitting parameters for node degree distributions in IoS
k a b c w R2 1 0.005 76 0.092 78 5.678 06 3.614 14 0.974 97 2 0.004 78 0.091 25 5.516 48 3.708 41 0.969 76 3 0.004 55 0.092 32 6.083 05 3.787 92 0.964 58 表 2 船舶社会网络的小世界特征
Table 2. The small-world character of the ship's social network
时间(月-日) 节点数N 边数E C(k, k + 2879) D(k, k + 2 879) L(k, k + 2 879) d(k, k + 2 879) 6-1 3 823 697 533 0.426 7 2.134 0.305 6-2 3 922 762 933 0.446 8 2.135 0.267 6-3 3 917 802 248 0.437 8 2.120 0.265 6-4 3 867 794 276 0.444 8 2.111 0.264 6-5 3 903 790 464 0.436 7 2.115 0.302 表 3 船舶社会网络空间特征
Table 3. Spatial characterization of the ship's social network
网络图 节点数N 边数E 离散度γ 组团数 平均相遇船舶数 平均友邻时间/s G(1, 1) 665 2 917 0.426 43 8.77 28.92 G(1, 120) 2 010 46 377 0.684 17 46.15 1 384.56 G(1, 2 880) 3 823 697 533 0.896 3 364.92 10 947.61 表 4 区域船舶友邻时间
Table 4. Regional ship friendly neighbour time
范围 重要节点(MMSI) 船舶节点i(MMSI) 船舶节点j(MMSI) 友邻时间/s 范围 重要节点(MMSI) 船舶节点i(MMSI) 船舶节点j(MMSI) 友邻时间/s 芜湖以下50 km 467 467 161 467 467 161 645 106 846 2 430 芜湖以下100 km 211 709 581 211 709 581 776 224 345 1 530 467 467 161 834 228 004 1 020 211 709 581 458 063 163 1 170 645 106 846 834 228 004 870 934 972 278 126 324 828 1 140 829 904 595 671 039 974 540 318 252 935 368 229 080 1 110 467 467 161 671 039 974 834 228 004 360 211 709 581 752 811 454 472 472 505 600 393 359 141 207 419 604 120 502 713 373 819 418 141 150 393 359 141 832 464 369 60 732 989 231 776 224 345 60 207 419 604 798 296 303 30 298 476 590 458 063 163 30 366 280 390 681 187 517 2 070 174 436 137 782 922 496 1 890 芜湖以下150 km 366 280 390 366 280 390 699 223 446 1 800 芜湖以下200 km 174 436 137 174 436 137 987 424 702 1 560 713 676 072 853 043 212 1 560 868 926 553 951 126 230 1 260 702 567 328 969 335 806 1 080 255 790 833 369 933 439 990 885 865 689 631 623 576 960 730 222 213 279 344 715 720 208 161 043 250 965 068 690 692 952 926 469 217 316 510 474 840 537 894 912 330 600 806 065 477 914 433 428 510 857 089 321 505 649 527 570 863 568 231 433 091 850 450 739 408 485 513 222 732 510 225 746 089 470 098 559 330 516 422 564 260 991 251 240 542 592 833 220 978 467 300 注*:选取了2023年6月1日09:00—10:00芜湖至南京水域船舶社会网络部分节点。 表 5 船舶节点运动模式
Table 5. Motion patterns of ship nodes
时间/s 节点度 节点个数 平均速度(/km/h) 30 0~10 464 6.686 10~20 189 5.982 20~30 52 1.352 30~40 22 0.315 3 600 0~50 1 332 3.611 50~100 629 3.815 100~150 206 4.982 150~200 16 10.279 200~250 13 10.705 86 400 0~200 1 517 4.815 200~400 731 6.093 400~600 668 5.982 600~800 537 5.575 800~1 000 273 7.927 1 000~1 200 92 8.130 1 200~1 400 5 8.445 -
[1] TIAN Z, LIU F, LI Z, et al. The development of key technologies in applications of vessels connected to the internet[J]. Symmetry, 2017, 9(10): 211-231. doi: 10.3390/sym9100211 [2] ASLAM S, MICHAELIDES P M, HERODOTOU H. Internet of ships: a survey on architectures, emerging applications, and challenges[J]. IEEE Internet of Things Journal, 2020, 7 (10): 9714-9727. doi: 10.1109/JIOT.2020.2993411 [3] 汪洋, 叶挺, 李廷文等. 自主船舶航行系统信息空间安全: 挑战与探索[J]. 华中科技大学学报(自然科学版), 2023, 51 (2): 64-76.WANG Y, YE T, LI Y W, et al. Cyberspace security for the autonomous ship navigation system: challenges and explorations[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2023, 51(2): 64-76. (in Chinese) [4] XING L, ZHAO P, GAO J, et al. A survey of the social internet of vehicles: secure data issues, solutions, and federated learning[J]. IEEE Intelligent Transportation Systems Magazine, 2023, 15(2): 70-84. doi: 10.1109/MITS.2022.3190036 [5] 韩涛, 贺威, 代俊, 等. 基于无标度网络的车联网连通性研究[J]. 通信学报, 2021, 42(4): 100-108.HAN T, HE W, DAI J, et al. Connectivity analysis of IoV based on scale-free network[J]. Journal on Communications, 2021, 42(4): 100-108. (in Chinese) [6] SANTOS F, AQUINO A, R.M. E M, et al. Temporal complex networks modeling applied to vehicular ad-hoc networks[J]. Journal of Network and Computer Applications, 2021, 192 (15): 103168. [7] FENG H F, XU Y J. An empirical study on evolution of the connectivity for vanets based on taxi GPS traces[J]. International Journal of Distributed Sensor Networks, 2016, 12(2): 258046. [8] WATTS D J, STROGATZ S H. Collective dynamics of "small-world"networks[J]. Nature, 1998, 393: 440-442. doi: 10.1038/30918 [9] BARABASI A L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512. doi: 10.1126/science.286.5439.509 [10] 陈志刚, 徐悦, 张立中, 等. 机会社会网络中基于社会关系的数据传输机制[J]. 华中科技大学学报(自然科学版), 2021, 49(2): 79-84.CHEN Z G, XU Y, ZHANG L Z, et al. Data transmission mechanism based on social relations in opportunity social network[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2021, 49(2): 79-84. (in Chinese) [11] TRACY S, SAMRACHANAA. A latent space network model for social influence[J]. Psychometrika, 2020, 85(2): 251-274. [12] 孙雁飞, 尹嘉峥, 亓晋, 等. 基于动态图嵌入的车联网拓扑控制[J]. 通信学报, 2022, 43(6): 133-142.SUN Y F, YIN J Z, QI J, et al. Topology control based on dynamic graph embedding in Internet of vehicles[J]. Journal of Communications, 2022, 43(6): 133-142. (in Chinese) [13] LIU Z C, LI Y, ZHANG Z Y, et al. Spatial topological analysis model of ship encounter space[J]. Ocean Engineering, 2020, 202: 107171. [14] SUI Z Y, WEN Y Q, HUANG Y M, et al. Empirical analysis of complex network for marine traffic situation[J]. Ocean Engineering, 2020, 214: 107848. [15] WU J, ZHANG D, WAN C, et al. Novel approach for comprehensive centrality assessment of ports along the maritime silk road[J]. Transportation Research Record, 2019, 2673 (9), 461-470. [16] WAN C P, TAO J L, YANG Z L, et al. Evaluating recovery strategies for the disruptions in liner shipping networks: a resilience approach[J]. The International Journal of Logistics Management, 2022, 33(2): 389-409. [17] 彭澎, 程诗奋, 刘希亮, 等. 全球海洋运输网络健壮性评估[J]. 地理学报, 2017, 72(12): 2241-2251.PENG P, CHENG S F, LIU X L, et al, The robustnessevaluation of global maritime transportation networks[J]. Acta Geographica Sinica, 2017, 72(12): 2241-2251. (in Chinese) [18] 张欣, 李双菲, 孙代源. 中欧集装箱海铁复合运输网络脆弱性分析[J]. 交通信息与安全, 2023, 41(3): 48-58. doi: 10.3963/j.jssn.1674-4861.2023.03.006ZHANG X, LI S F, SUN D Y. Vulnerability analysis of China-Europe container sea-rail intermodal transport network[J]. Journal of Transport Information and safety, 2023, 41(3): 48-58. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.03.006 [19] WEN Y Q, TAO W, SUI Z Y, et al. Dynamic model-based method for the analysis of ship behavior in marine traffic situation[J]. Ocean Engineering, 2022, 257: 111578. [20] SUI Z Y, HUANG Y M, WEN Y Q, et al. Marine traffic profile for enhancing situational awareness based on complex network theory[J]. Ocean Engineering, 2021, 241: 110049. [21] HOLME P, SARAMAKI J. Temporal networks[J]. Physics Reports, 2012, 519(3): 97-125. [22] 初秀民, 刘潼, 马枫, 等. 山区航道AIS信号场强分布特性[J]. 交通运输工程学报, 2014, 14(6): 117-126.CHU X M, LIU T, MA F, et al. Distribution characteristic of AIS signal field intensity along mountainous waterway[J]. Journal of Traffic and Transportation Engineering, 2014, 14 (6): 117-126. (in Chinese) [23] ZOU Y, ZHANG Y, WANG S, et al. Ship regulatory method for maritime mixed traffic scenarios based on key risk ship identification[J]. Ocean Engineering, 2024, 298: 117105.