留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于驾驶人心理风险场模型的个性化换道决策方法

李珂 韩同群 杨正才 高菲 吴浩然

李珂, 韩同群, 杨正才, 高菲, 吴浩然. 基于驾驶人心理风险场模型的个性化换道决策方法[J]. 交通信息与安全, 2023, 41(6): 32-41. doi: 10.3963/j.jssn.1674-4861.2023.06.004
引用本文: 李珂, 韩同群, 杨正才, 高菲, 吴浩然. 基于驾驶人心理风险场模型的个性化换道决策方法[J]. 交通信息与安全, 2023, 41(6): 32-41. doi: 10.3963/j.jssn.1674-4861.2023.06.004
LI Ke, HAN Tongqun, YANG Zhengcai, GAO Fei, WU Haoran. A Personalized Lane Change Decision Method Based on Driver's Psychological Risk Field Model[J]. Journal of Transport Information and Safety, 2023, 41(6): 32-41. doi: 10.3963/j.jssn.1674-4861.2023.06.004
Citation: LI Ke, HAN Tongqun, YANG Zhengcai, GAO Fei, WU Haoran. A Personalized Lane Change Decision Method Based on Driver's Psychological Risk Field Model[J]. Journal of Transport Information and Safety, 2023, 41(6): 32-41. doi: 10.3963/j.jssn.1674-4861.2023.06.004

基于驾驶人心理风险场模型的个性化换道决策方法

doi: 10.3963/j.jssn.1674-4861.2023.06.004
基金项目: 

湖北省重点研发计划项目 2023BAB169

武汉市科技重大专项 2022013702025184

中央引导地方科技发展专项项目 2022BGE248

详细信息
    作者简介:

    李珂(1998—),硕士研究生. 研究方向:智能驾驶关键技术. E-mail: 2807070277@qq.com

    通讯作者:

    韩同群(1967—),硕士,教授. 研究方向:汽车动力系统仿真. E-mail: htqhtq67@sina.com

  • 中图分类号: U491.25

A Personalized Lane Change Decision Method Based on Driver's Psychological Risk Field Model

  • 摘要: 行驶环境中交互车辆的运动行为会对驾驶人心理产生刺激,引起驾驶人心理状态的变化,进而影响其换道决策行为。为此提出了1种基于驾驶人心理风险场模型的个性化换道决策方法。基于单向3车道快速路交通场景,通过交互式多模型分析车辆的横向速度与横向位移,引入可变横向速度相关的转移概率矩阵,预测交互车辆的目标车道选择;建立驾驶人心理风险场模型,量化行驶环境与交互车辆的运动行为对驾驶人心理风险造成的影响;利用高仿真驾驶模拟器联合SUMO试验平台开展287人次的模拟驾驶试验,通过建立混合交通仿真场景采集驾驶人的换道数据,并选取平均碰撞时间与驾驶人心理风险因子2个特征参数,使用K-means算法进行驾驶风格聚类,将驾驶人分为保守型、正常型和激进型这3类,并进一步确定不同风格的驾驶人在换道初始时刻所能接受的心理风险阈值。在此基础上,实现车辆的个性化安全换道决策。驾驶模拟器试验验证结果表明:对应于保守型、正常型和激进型的驾驶人,实际最小换道决策时间分别为3.48,6.29,11.33 s,实际最大换道决策时间分别为4.65,7.45,12.52 s,理论换道决策时间分别为4.09,6.83,11.95 s,所建立的换道决策模型的个性化换道时间预测误差均小于0.62 s。本方法可以准确评估不同风格驾驶人的心理风险,实现个性化的换道决策。

     

  • 图  1  换道决策方法路线图

    Figure  1.  Lane-changing decision method roadmap

    图  2  交互车辆运动行为预测模型结构图

    Figure  2.  Interactive vehicle motion behavior prediction model structure diagram

    图  3  转移概率矩阵的表示形式

    Figure  3.  Representation of transition probability matrix

    图  4  平均车速与每起事故平均死亡人数的关系

    Figure  4.  The relationship between average vehicle speed and the average number of deaths per accident

    图  5  单位事故损失与路面附着系数的关系

    Figure  5.  The relationship between unit accident loss and road surface friction coefficient

    图  6  驾驶模拟仿真环境

    Figure  6.  Driving simulation environment

    图  7  仿真场景图

    Figure  7.  Simulation scene graph

    图  8  驾驶风格分类

    Figure  8.  Driving style classification

    图  9  不同驾驶风格的驾驶人心理风险阈值

    Figure  9.  Psychological risk thresholds for drivers with different driving styles

    图  10  仿真场景示意图

    Figure  10.  Schematic diagram of simulation scenario

    图  11  目标车道预测概率变化(0~6 s)

    Figure  11.  Target lane prediction probability change(0~6 s)

    图  12  34名驾驶人的实际换道轨迹包络线

    Figure  12.  The actual lane change trajectory envelope for 34 drivers

    图  13  基于驾驶人心理风险的换道决策

    Figure  13.  Lane change decisions based on the driver's psychological risk

    表  1  中国5种类型道路安全交通事故数据

    Table  1.   Data on five type of road safety traffic accidents in China

    道路类型 平均车速/(km/h) 死亡人数 平均死亡人数
    高速公路 100 5 843 0.672
    一级公路 70 6 532 0.359
    二级公路 50 13 642 0.373
    三级公路 35 7 499 0.327
    四级公路 30 5 006 0.314
    下载: 导出CSV

    表  2  中国道路安全交通事故数据(路面状态)

    Table  2.   Chinese road safety traffic accident data (road surface status)

    路面状态 路面附着系数 单位事故损失/(×1 000元)
    干燥 0.90 4.978
    潮湿 0.60 6.683
    泥泞 0.55 6.438
    下载: 导出CSV

    表  3  不同道路线性的单位事故损失标定

    Table  3.   Unit accident loss calibration for different road linearities

    道路曲率 道路坡度
    平路 正常坡 陡坡 连续坡
    直路 1.000 1.614 1.377 4.172
    正常弯 1.174 1.425 1.540
    急弯 1.256 1.274 1.412
    下载: 导出CSV

    表  4  不同驾龄驾驶人的心理风险标定

    Table  4.   Psychological risk calibration for drivers of different driving experience

    编号 驾龄u/年 ψ(de)
    1 >0~1 0.601
    2 >1~2 0.612
    3 >2~3 0.685
    4 >3~4 0.672
    5 >4~5 0.668
    6 >5~10 0.795
    7 >10~15 0.921
    8 >15~20 0.947
    9 >20 1.000
    下载: 导出CSV

    表  5  不同受教育程度驾驶人的心理风险标定

    Table  5.   Psychological risk calibration for drivers with different levels of education

    编号 受教育程度 ψ(rt)
    1 0.690
    2 小学 0.458
    3 中学 0.372
    4 本科 1.000
    5 本科以上 0.786
    下载: 导出CSV

    表  6  不同驾驶风格的驾驶人心理风险阈值

    Table  6.   Psychological risk thresholds for drivers with different driving styles

    驾驶风格 Kα Kβ
    保守型 0.109 9 0.179 7
    正常型 0.152 0 0.378 4
    激进型 0.290 4 0.677 5
    下载: 导出CSV

    表  7  不同驾驶风格的换道轨迹决策时间

    Table  7.   Lane change trajectory decision times for different driving styles

    驾驶风格 换道决策时间/s
    最小值 最大值
    保守型 3.48 4.65
    正常型 6.29 7.45
    激进型 11.33 12.52
    下载: 导出CSV
  • [1] LI Q W, LI X P, MANNERING F. Assessment of discretionary lane-changing decisions using a random parameters approach with heterogeneity in means and variances[J]. Transportation Research Record, 2021 (6): 330-338.
    [2] GIPPS P G. A model for the structure of lane-changing decisions[J]. Transportation Research Part B: Methodological, 1986, 20 (5): 403-414. doi: 10.1016/0191-2615(86)90012-3
    [3] 王慧然, 陈无畏, 王其东, 等. 基于相邻车道安全态势划分的换道决策[J]. 机械工程学报, 2023, 59 (2): 233-244. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202302020.htm

    WANG H R, CHEN W W, WANG Q D, et al. Lane change decision based on the safety state division of the adjacent lanes[J]. Journal of Mechanical Engineering, 2023, 59(2): 233-244. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202302020.htm
    [4] WANG J J, ZHANG Q C, ZHAO D B, et al. Lane change decision-making through deep reinforcement learning with rule-based constraints[C]. 2019 International Joint Conference on Neural Networks(IJCNN), Budapest, Hungary : IEEE, 2019.
    [5] SHENG Z H, LIU L, XUE S B, et al. A cooperation-aware lane change method for autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 24(3): 3236-3251.
    [6] WANG W D, QIE T Q, YANG C, et al. An intelligent lane-changing behavior prediction and decision-making strategy for an autonomous vehicle[J]. IEEE Transactions on Industrial Electronics, 2021, 69 (3): 2927-2937.
    [7] SATHYAN A, MA J Q, COHEN K. Decentralized cooperative driving automation: a reinforcement learning framework using genetic fuzzy systems[J]. Transportmetrica B: Transport Dynamics, 2021, 9 (1): 775-797. doi: 10.1080/21680566.2021.1951394
    [8] 聂琳真, 管家意, 卢炽华, 等. 基于模糊逻辑的高速公路微观换道行为[J]. 北京工业大学学报, 2018, 44 (3): 424-432. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201803015.htm

    NIE L Z, GUAN J Y, LU C H, et al. Micro-lane changing behavior of expressways based on fuzzy logic[J]. Journal of Beijing University of Technology, 2018, 44(3): 424-432. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201803015.htm
    [9] GU X P, HAN Y P, YU J F. A novel lane-changing decision model for autonomous vehicles based on deep autoencoder network and XGBoost[J]. IEEE Access, 2020, (8) : 9846-9863.
    [10] FAN B, WU Y, HE Z B, et al. Digital twin empowered mobile edge computing for intelligent vehicular lane-changing[J]. IEEE Network, 2021, 35 (6): 194-201. doi: 10.1109/MNET.201.2000768
    [11] CHENG S, YANG B, WANG Z, et al. Spatio-temporal image representation and deep-learning-based decision framework for automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (12): 24866-24875. doi: 10.1109/TITS.2022.3195213
    [12] ZHOU W, CHEN D, YAN J, et al. Multi-agent reinforcement learning for cooperative lane changing of connected and autonomous vehicles in mixed traffic[J]. Autonomous Intelligent Systems, 2022, 2 (1): 1-11. doi: 10.1007/s43684-021-00019-7
    [13] ZHANG X H, SUN J, QI X, et al. Simultaneous modeling of car-following and lane-changing behaviors using deep learning[J]. Transportation Research Part C: Emerging Technologies, 2019 (104): 287-304.
    [14] XIE D F, FANG Z Z, JIA B, et al. A data-driven lane-changing model based on deep learning[J]. Transportation Research Part C: Emerging Technologies, 2019, (106): 41-60.
    [15] GAO J, MURPHEY Y L, ZHU H H. Multivariate time series prediction of lane changing behavior using deep neural network[J]. Applied Intelligence, 2018, 48 (10): 3523-3537.
    [16] WANG X Y, GUO Y Q, BAI C L, et al. Driver's intention identification with the involvement of emotional factors in two-lane roads[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22 (11): 6866-6874.
    [17] LIU Y Q, WANG X Y. The analysis of driver's behavioral tendency under different emotional states based on a Bayesian Network[J]. IEEE Transactions on Affective Computing, 2020, 14 (1): 165-177.
    [18] LING J, LI J, TEI K, et al. Towards personalized autonomous driving: an emotion preference style adaptation framework[C]. 2021 IEEE International Conference on Agents (ICA), Kyoto, Japan: IEEE, 2021.
    [19] 李青, 景云超, 朱彤, 等. 基于LightGBM的驾驶人风险感知能力判别方法[J]. 交通信息与安全, 2021, 39 (4): 16-25. doi: 10.3963/j.jssn.1674-4861.2021.04.003

    LI Q, JING Y C, ZHU T, et al. Driver risk perception ability identification method based on LightGBM[J]. Journal of Transport Information and Safety, 2021, 39(4): 16-25. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.04.003
    [20] GAO H B, QIN Y C, HU C, et al. An interacting multiple model for trajectory prediction of intelligent vehicles in typical road traffic scenario[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 34 (9): 1-12.
    [21] PAK J M. Hybrid interacting multiple model filtering for improving the reliability of radar-based forward collision warning systems[J]. Sensors, 2022, 22 (3): 875.
    [22] GOMAA M A K, DE SILVA O, MANN G K I, et al. Observability-constrained VINS for MAVs using interacting multiple model algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 57 (3): 1423-1442.
    [23] FAN X X, WANG G, HAN J C, et al. Interacting multiple model based on maximum correntropy Kalman filter[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2021, 68 (8): 3017-3021.
    [24] LI Y, WANG J Q, WU J. Model calibration concerning risk coefficients of driving safety field model[J]. Journal of Central South University, 2017, 24 (6): 1494-1502.
    [25] 郭子彬, 陈慧, 夏韬锴, 等. 弯道工况下驾驶人主观风险感知的量化研究[J]. 汽车工程, 2022, 44 (9): 1447-1455.

    GUO Z B, CHEN H, XIA T K, et al. Quantitative study of driver's subjective risk perceptionunder curved working conditions[J]. Automotive Engineering, 2022, 44(9): 1447-1455. (in Chinese)
    [26] 公安部交通管理局. 中国道路交通事故统计年报[R]. 北京: 公安部交通管理局, 2017.

    Ministry of Public Security, Transportation Bureau. The road traffic accidents statistics report in China[R]. Beijing: Ministry of Public Security, Transportation Bureau, 2017. (in Chinese)
  • 加载中
图(13) / 表(7)
计量
  • 文章访问数:  439
  • HTML全文浏览量:  224
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-04
  • 网络出版日期:  2024-04-03

目录

    /

    返回文章
    返回