留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑排队时间和充电费用的电动汽车充电站选址模型

梁露 韩飞

梁露, 韩飞. 考虑排队时间和充电费用的电动汽车充电站选址模型[J]. 交通信息与安全, 2023, 41(4): 154-162. doi: 10.3963/j.jssn.1674-4861.2023.04.016
引用本文: 梁露, 韩飞. 考虑排队时间和充电费用的电动汽车充电站选址模型[J]. 交通信息与安全, 2023, 41(4): 154-162. doi: 10.3963/j.jssn.1674-4861.2023.04.016
LIANG Lu, HAN Fei. A Site Selection Model for Electric Vehicle Charging Stations Considering Queuing Time and Charging Cost[J]. Journal of Transport Information and Safety, 2023, 41(4): 154-162. doi: 10.3963/j.jssn.1674-4861.2023.04.016
Citation: LIANG Lu, HAN Fei. A Site Selection Model for Electric Vehicle Charging Stations Considering Queuing Time and Charging Cost[J]. Journal of Transport Information and Safety, 2023, 41(4): 154-162. doi: 10.3963/j.jssn.1674-4861.2023.04.016

考虑排队时间和充电费用的电动汽车充电站选址模型

doi: 10.3963/j.jssn.1674-4861.2023.04.016
基金项目: 

国家重点研发计划项目 2019YFE0123800

陕西省自然科学基金项目 2020JQ-370

详细信息
    作者简介:

    梁露(1998—),硕士研究生. 研究方向:交通运输规划与管理. E-mail: llwaqw@163.com

    通讯作者:

    韩飞(1986—),博士,讲师. 研究方向:城市交通规划理论与方法. E-mail: hanfei@chd.edu.cn

  • 中图分类号: U491.8

A Site Selection Model for Electric Vehicle Charging Stations Considering Queuing Time and Charging Cost

  • 摘要: 电动汽车充电站的合理布局对于降低里程焦虑、提高出行舒适度和电动汽车的普及率具有关键作用。为克服现有研究对充电排队时间和充电费用考虑的不足,构建以里程焦虑、充电费用最小化为目标的改进充电站选址优化模型,并明确考虑充电排队和充电绕行行为。分析电动汽车充电行为特征,引入路径容许偏离距离建立充电绕行路径距离约束,由此降低路网中偏离路径集的规模;分析充电站排队系统特征,推导出系统平均排队时间的解析表达式,建立可接受排队时间阈值、预算成本等约束条件;基于里程焦虑产生规律和阶梯电价收费方式,构建里程焦虑和充电费用最小化的决策目标,采用Lingo软件求解;选取西安市某局部路网进行算例分析。研究结果表明:在同等条件下,所提出模型计算得到的系统总充电排队时间为5.84 h,系统总充电费用为1 440元,与未考虑排队时间和充电费用的模型相比,系统排队时间减少了1.19 h,系统总充电费用减少了240元;分析充电站预算成本B的取值发现,当B≤5亿元时,系统总里程焦虑和充电费用随B增加而减小;当B>5亿元时,B的增加无法进一步降低系统总里程焦虑和充电费用。在预算成本B = 3,4,5亿元的条件下,分别分析路径偏离距离η的取值对优化目标的影响,随着路径偏离距离η由0 km增加到4 km时,系统总里程焦虑和充电费用均呈下降趋势。

     

  • 图  1  1次充电循环中剩余电量和里程焦虑的变化情况

    Figure  1.  Variation of SOC and range anxiety during a single charge cycle

    图  2  整个行程中剩余电量和里程焦虑的变化情况

    Figure  2.  Variation of SOC and range anxiety on the entire trip

    图  3  西安市某区域路网详情图

    Figure  3.  Detail map of road network in an area of Xi'an

    图  4  预算成本B值对目标函数、里程焦虑和充电费用的影响

    Figure  4.  Effects of budget cost B value on objective function, range anxiety and charging cost

    图  5  路径容许偏差η对计算时间和目标函数的影响

    Figure  5.  Effects of allowable path deviation η on calculation time and objective function

    表  1  相关参数取值

    Table  1.   Values of related parameters

    符号 取值
    θ1 0.9
    θ2 0.1
    B /亿元 4
    E/(kW·h) 10
    EO/(kW·h) 7
    ED/(kW·h) 7
    Ecomf/(kW·h) 5
    μi/(pcu/h) 20
    L1 /km 10.9
    L2 /km 13
    m /个 5
    g0 /元 1
    gi /元 2
    ξ/(kW·h) 5
    qmax /h 1.5
    下载: 导出CSV

    表  2  模型计算结果

    Table  2.   Model calculation results

    序号 起点 终点 路径 长度/km 最短长度/km 充电站 充电费用/元 里程焦虑
    1 1 14 1-2-3-6-10-14 10.9 10.9 2、10 1 440 3 441.07
    2 3 11 3-2-5-4-8-7-11 14.1 13.0 2、5、7
    下载: 导出CSV

    表  3  DCSP模型计算结果

    Table  3.   DCSP model calculation results

    序号 起点 终点 路径 距离/km 最短距离/km 充电站 充电费用/元 里程焦虑
    1 1 14 1-2-5-6-10-14 11.1 10.9 2、6、10 1 680 1 733.87
    2 3 11 3-2-1-7-11 13.0 13.0 2、7
    下载: 导出CSV

    表  4  2种模型的对比分析

    Table  4.   Comparative analysis of the two models

    模型 里程焦虑 充电费用/元 排队时间/h 迭代次数 计算时间/s
    DCSP模型 1 733.87 1 680 7.03 16 568 4.34
    改进模型 3 441.07 1 440 5.84 160 259 117.68
    下载: 导出CSV

    表  5  不同预算成本下的模型最优解

    Table  5.   The optimal solution of the model under different budget costs

    预算成本B/亿元 里程焦虑 充电费用/元 目标函数 路径1 距离1/km 路径2 距离2/km 充电站 充电站数
    3 5 370.85 1 640 0.529 7 1-2-3-6-10-14 10.9 3-2-1-7-11 13.0 2、7、10 3
    4 5 091.60 1 520 0.467 8 1-2-5-6-10-14 11.1 3-2-1-7-11 13.0 2、5、7、10 4
    5 3 086.72 1 360 0.310 8 1-2-5-9-10-14 11.3 3-2-5-8-12-11 14.5 2、5、8、10、11 5
    6 3 086.72 1 360 0.310 8 1-2-5-9-10-14 11.3 3-2-5-8-12-11 14.5 2、5、8、10、11 5
    7 3 086.72 1 360 0.310 8 1-2-5-9-10-14 11.3 3-2-5-8-12-11 14.5 2、5、8、10、11 5
    8 3 086.72 1 360 0.310 8 1-2-5-9-10-14 11.3 3-2-5-8-12-11 14.5 2、5、8、10、11 5
    下载: 导出CSV

    表  6  不同充电站数量下,不同η取值的模型结果

    Table  6.   The model results of different η values under different number of charging stations

    η/km B = 3 B = 4 B = 5
    计算时间/s 里程焦虑 充电费用/元 目标函数 计算时间/s 里程焦虑 充电费用/元 目标函数 计算时间/s 里程焦虑 充电费用/元 目标函数
    0 2 5 223.98 2 453 0.542 8 4 5 100.87 2 450 0.536 1 5 1 823.45 1 970 0.442 0
    1 85 5 141.92 2 410 0.533 7 119 5 009.27 1 900 0.470 2 149 3 587.47 1 380 0.429 1
    2 341 6 814.13 1 600 0.530 2 478 5 321.67 1 750 0.469 7 651 3 527.47 1 370 0.424 2
    3 402 5 370.85 1 640 0.529 7 564 5 091.60 1 520 0.467 8 589 3 086.72 1 360 0.310 8
    4 478 4 874.67 2 300 0.507 7 608 3 527.47 1 370 0.334 7 776 3 086.72 1 360 0.310 8
    下载: 导出CSV
  • [1] GONG L L, CAO W, LIU K L, et al. Optimal charging strategy for electric vehicles in residential charging station under dynamic spike pricing policy[J]. Sustainable Cities and Society, 2020, 63: 104-124.
    [2] OUYANG X, XU M, ZHOU B J. An Elastic demand model for locating electric vehicle charging stations[J]. Networks and Spatial Economics, 2022, 22(1): 1-31. doi: 10.1007/s11067-021-09546-5
    [3] ZHANG Y, ZHANG Q, FARNOOSH A, et al. GIS-based multi-objective particle swarm optimization of charging stations for electric vehicles[J]. Energy, 2019, 169: 844-853. doi: 10.1016/j.energy.2018.12.062
    [4] TAO Y, HUANG M H, CHEN Y P, et al. Review of optimized layout of electric vehicle charging infrastructures[J]. Journal of Central South University, 2021, 28 (10): 3268-3278. doi: 10.1007/s11771-021-4842-3
    [5] LIN W T, HUA G W. The flow capturing location model and algorithm of electric vehicle charging stations[C]. International Conference on Logistics, Informatics and Service Sciences, Beijing: Beijing Jiaotong University, 2015.
    [6] XIAO S Q, LEI X, HUANG T, et al. Coordinated planning for fast charging stations and distribution networks based on an improved flow capture location model[J]. CSEE Journal of Power and Energy Systems, 2023, 9(4): 1505-1516.
    [7] KIM J G, KUBY M. The deviation-flow refueling location model for optimizing a network of refueling stations[J]. International Journal of Hydrogen Energy, 2012, 37(6): 5406-5420. doi: 10.1016/j.ijhydene.2011.08.108
    [8] OUYANG X, XU M, ZHOU B J. An elastic demand model for locating electric vehicle charging stations[J]. Networks & Spatial Economics, 2022, 22(1): 1-31.
    [9] WU Z, ZHUANG Y, ZHOU S, et al. Bi-level planning of multi-functional vehicle charging stations considering land use types[J]. Energies, 2020, 13(5): 1283-1301. doi: 10.3390/en13051283
    [10] GUO F, YANG J, LU J Y. The battery charging station location problem: Impact of users' range anxiety and distance convenience[J]. Transportation Research Part E: Logistics & Transportation, 2018, 114: 1-18.
    [11] XU M, MENG Q. Optimal deployment of charging stations considering path deviation and nonlinear elastic demand[J]. Transportation Research Part B: Methodological, 2020, 135: 120-142. doi: 10.1016/j.trb.2020.03.001
    [12] 张智禹, 王致杰, 杨皖昊, 等. 基于充电需求预测的电动汽车充电站选址规划研究[J]. 电测与仪表, 2023, 4(20): 1-19. https://www.cnki.net/KCMS/detail/detail.aspx?dbcode=IPFD&filename=ZGGS202306002010&dbname=IPFDLAST2023

    ZHANG Z Y, WANG Z J, YANG W H, et al. Research on location planning of electric vehicle charging station based on charging demand prediction[J]. Electrical Measurement & Instrumentation, 2023, 4(20): 1-19. (in Chinese) https://www.cnki.net/KCMS/detail/detail.aspx?dbcode=IPFD&filename=ZGGS202306002010&dbname=IPFDLAST2023
    [13] XIAO D, AN S, CAI H, et al. An optimization model for electric vehicle charging infrastructure planning considering queuing behavior with finite queue length[J]. The Journal of Energy Storage, 2020, 29: 101317. doi: 10.1016/j.est.2020.101317
    [14] SHAHRAKI N, CAI H, TURKAY M, et al. Optimal locations of electric public charging stations using real world vehicle travel patterns[J]. Transportation Research Part D: Transport and Environment, 2015, 41: 165-176. doi: 10.1016/j.trd.2015.09.011
    [15] HUANG Y, KOCKELMAN K M. Electric vehicle charging station locations: Elastic demand, station congestion, and network equilibrium[J]. Transportation Research Part D: Transport and Environment, 2020, 78: 102-118.
    [16] CHEN T D, KOCKELMAN K M, KHAN M. Locating electric vehicle charging stations: Parking-based assignment method for Seattle, Washington[J]. Transportation Research Record, 2018, 2385(1): 28-36.
    [17] 罗思杰, 邹复民, 郭峰, 等. 基于轨迹数据的出租车充电站选址方法[J]. 计算机工程与应用, 2022, 58(8): 273-282. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202208029.htm

    LUO S J, ZOU F M, GUO F, et al. Taxi charging station location method based on trajectory data[J]. Computer Engineering and Applications, 2022, 58(8): 273-282. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202208029.htm
    [18] GENG L, LU Z, GUO X, et al. Coordinated operation of coupled transportation and power distribution systems considering stochastic routing behaviour of electric vehicles and prediction error of travel demand[J]. IET Generation, Transmission & Distribution, 2021, 15(14): 2112-2116.
    [19] ZHAO Y Q, GUO Y, GUO Q L, et al. Deployment of the electric vehicle charging station considering existing competitors[J]. IEEE Transactions on Smart Grid, 2020, 11(5): 4236−4248. doi: 10.1109/TSG.2020.2991232
    [20] XU M, YANG H, WANG S A. Mitigate the range anxiety: Siting battery charging stations for electric vehicle drivers[J]. Transportation Research Part C: Emerging Technologies, 2020, 114(2): 164-188.
    [21] 黄柳, 胡丹丹. 考虑路径偏差和里程焦虑下充/换电站联合布局定容优化[J]. 物流技术, 2021, 40(6): 68-75. https://www.cnki.com.cn/Article/CJFDTOTAL-WLJS202106012.htm

    HUANG L, HU D D. Constant capacity optimization of joint layout of charging/changing station considering path deviation and mileage anxiety[J]. Logistics Technology, 2021, 40(6): 68-75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLJS202106012.htm
    [22] 邵赛, 关伟, 毕军. 考虑排队时间和里程约束的竞争充电站选址问题[J]. 交通运输系统工程与信息, 2016, 16(6): 169-175. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201606026.htm

    SHAO S, GUAN W, BI J. Competitive charging station location problem considering queuing time and mileage constraints[J]. Transportation System Engineering and Information, 2016, 16(6): 169-175. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201606026.htm
    [23] 胡诚, 黄合来, 李欣彤, 等. 考虑心理潜变量的城市电动自行车用户出行决策行为[J]. 交通信息与安全, 2021, 39(3): 111-120. doi: 10.3963/j.jssn.1674-4861.2021.03.014

    HU C, HUANG H L, LI X T, et al. Travel decision-making behavior of urban electric bicycle users considering psychological latent variables[J]. Journal of Transport Information and Safety, 2019, 39(3): 111-120. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.03.014
    [24] 武渊, 叶宁. 城市路网中电动汽车充电站双层多目标选址定容模型[J]. 山西大学学报(自然科学版), 2021, 44(4): 695-704. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDR202104009.htm

    WU Y, YE N. Two-layer multiobjective siting capacity model of electric vehicle charging stations in urban road network[J]. Journal of Shanxi University(Natural Science Edition), 2021, 44(4): 695-704. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXDR202104009.htm
    [25] AGRAWAL A, BARRATT S, BOYD S. Learning convex optimization models[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(8): 1355-1364.
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  417
  • HTML全文浏览量:  203
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-18
  • 网络出版日期:  2023-11-23

目录

    /

    返回文章
    返回