留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于ETC数据和A-BiLSTM神经网络的高速公路节假日短时交通流预测模型

戢晓峰 孔晓丽 陈方 郝京京 覃文文

戢晓峰, 孔晓丽, 陈方, 郝京京, 覃文文. 基于ETC数据和A-BiLSTM神经网络的高速公路节假日短时交通流预测模型[J]. 交通信息与安全, 2023, 41(3): 166-174. doi: 10.3963/j.jssn.1674-4861.2023.03.018
引用本文: 戢晓峰, 孔晓丽, 陈方, 郝京京, 覃文文. 基于ETC数据和A-BiLSTM神经网络的高速公路节假日短时交通流预测模型[J]. 交通信息与安全, 2023, 41(3): 166-174. doi: 10.3963/j.jssn.1674-4861.2023.03.018
JI Xiaofeng, KONG Xiaoli, CHEN Fang, HAO Jingjing, QIN Wenwen. A Forecasting Model of Short-term Traffic Flow on Expressways During Holidays Based on ETC Data and A-BiLSTM Neural Network Models[J]. Journal of Transport Information and Safety, 2023, 41(3): 166-174. doi: 10.3963/j.jssn.1674-4861.2023.03.018
Citation: JI Xiaofeng, KONG Xiaoli, CHEN Fang, HAO Jingjing, QIN Wenwen. A Forecasting Model of Short-term Traffic Flow on Expressways During Holidays Based on ETC Data and A-BiLSTM Neural Network Models[J]. Journal of Transport Information and Safety, 2023, 41(3): 166-174. doi: 10.3963/j.jssn.1674-4861.2023.03.018

基于ETC数据和A-BiLSTM神经网络的高速公路节假日短时交通流预测模型

doi: 10.3963/j.jssn.1674-4861.2023.03.018
基金项目: 

国家自然科学基金项目 42061030

详细信息
    通讯作者:

    戢晓峰(1982—),博士,教授.研究方向:交通安全、交通规划等. E-mail:yiluxinshi@sina.com

  • 中图分类号: U491.1

A Forecasting Model of Short-term Traffic Flow on Expressways During Holidays Based on ETC Data and A-BiLSTM Neural Network Models

  • 摘要: 电子不停车收费(electronic toll collection,ETC)门架系统为节假日高速公路短时交通流预测提供了数据支撑。针对节假日场景下高速公路交通流的非线性和复杂性特征,基于ETC门架数据研究了由注意力机制(attention)和双向长短期记忆(bidirectional long/short-term memory,BiLSTM)神经网络组成的Attention-BiLSTM(A-BiLSTM)组合模型。通过对ETC门架数据进行预处理,保证模型输入的可靠性;采用滑动窗口方法构建监督学习样本,提高模型学习效率。在模型中,使用BiLSTM神经网络,实现对交通流数据前向和后向时间依赖性特征的深入提取;引入注意力机制动态地权衡网络提取信息的重要程度,增强隐藏层特征的非线性表达能力;利用贝叶斯优化方法对模型进行超参数调优,提高模型的预测性能。采集大理-丽江高速公路白汉场至拉市镇的门架数据,处理成时间粒度为5,10,15 min的交通流数据进行模型验证。实验结果表明:①相比于自回归移动平均模型、支持向量机的预测结果,A-BiLSTM组合模型的均方根误差(root mean square error,RMSE)分别降低了73.3%和49.1%,平均绝对误差(mean absolute error,MAE)分别降低了76.0%和56.3%,预测效果好,可应用于实际的交通运营管理。②相比于未引入注意力机制的BiLSTM,A-BiLSTM组合模型的RMSE降低了41.9%,MAE降低了46.0%。③A-BiLSTM组合模型在5 min的时间粒度下表现最好,与输入数据时间粒度为10,15 min情况下所构建的模型预测误差相比,RMSE分别降低34.5%和42.1%,MAE分别降低39.9%和46.3%。

     

  • 图  1  节假日与非节假日交通流变化趋势对比

    Figure  1.  Comparison of traffic flow trend between holidays and non-holidays

    图  2  整体框架

    Figure  2.  Framework of entirety

    图  3  滑动窗口

    Figure  3.  Sliding window

    图  4  LSTM细胞单元

    Figure  4.  Cell of LSTM

    图  5  不同时间粒度下的模型预测结果

    Figure  5.  Prediction results of model under different time granularities

    表  1  ETC交易数据部分字段

    Table  1.   Part fields of ETC transaction

    序号 字段名称 字段说明
    1 通行标识ID 车辆当次通行的唯一ID
    2 门架编号 ETC门架的编号
    3 门架hex字符串 ETC门架的hex值
    4 行驶方向 1:上行;2:下行
    5 门架类型 1:路段;2:省界入口;3:省界出口
    6 通过时间 计费交易时间
    7 OBU序号编码 不超过20个字符
    8 计费车辆车牌号 计费车辆的车牌号码及颜色
    9 计费车型代码 计费车辆的车型
    10 入口站hex字符串 入口站的hex值
    11 入口日期及时间 入口交易发生的时间
    12 交易后累计里程 本次交易后标签累计里程
    下载: 导出CSV

    表  2  超参数约束条件与结果

    Table  2.   Constraints and results of hyperparameters

    超参数 约束条件 结果
    batch size [2, 128] 96
    units [2, 256] 96
    epochs [100, 500] 435
    optimizer [Adam,SGD,RMSprop] Adam
    下载: 导出CSV

    表  3  不同窗口下的误差

    Table  3.   Error under different windows

    窗口大小ΔX值/h 时间粒度:5 min 时间粒度:10 min 时间粒度:15 min
    ERMSE EMAE ERMSE EMAE ERMSE EMAE
    0.5 5.046 3.406 7.906 6.022 9.717 8.016
    1 5.216 3.525 7.707 5.668 9.352 7.519
    3 5.419 3.662 7.860 5.678 8.743 6.678
    6 5.493 3.887 8.894 6.476 8.708 6.338
    下载: 导出CSV

    表  4  预测误差对比

    Table  4.   Comparsion of the prediction error

    数据 ERMSE EMAE
    加入4月30日的交通流数据 5.046 3.406
    不加入4月30日的交通流数据 5.451 3.822
    下载: 导出CSV

    表  5  8种模型预测误差对比

    Table  5.   Comparison of prediction errors of 8 models

    模型 ERMSE EMAE
    ARIMA 18.867 14.189
    SVM 9.908 7.789
    BiLSTM 8.685 6.303
    LSTM 6.846 4.885
    TCC-LSTM 5.401 3.598
    1DCNN-LSTM-Attention 5.292 3.686
    LSTM-BP 5.084 3.475
    A-BiLSTM 5.046 3.406
    下载: 导出CSV
  • [1] 韩直, 徐冲聪, 韩嵩乔. 基于短时交通流预测的广域动态交通路径诱导方法[J]. 交通运输系统工程与信息, 2020, 20(1): 117-123+129. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202001020.htm

    HAN Z, XU C C, HAN S Q. Wide-area dynamic traffic path guidance method based on short-term traffic flow prediction[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(1): 117-123+129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202001020.htm
    [2] 郭嘉宸, 杨宇燊, 王研, 等. 精细化短时交通流预测模型及迁移部署方案[J]. 计算机应用, 2022, 42(6): 1748-1755. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY202206014.htm

    GUO J C, YANG Y S, WANG Y, et al. Refined short-term traffic flow prediction model and migration deployment plan[J]. Journal of Computer Applications, 2022, 42(6): 1748-1755. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY202206014.htm
    [3] 白伟华, 张传斌, 张塽旖, 等. 基于异常值识别卡尔曼滤波器的短期交通流预测[J]. 计算机应用研究, 2021, 38(3): 817-821. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202103034.htm

    BAI W H, ZHANG C B, ZHANG S Y, et al. Short-term traffic flow prediction based on outlier recognition Kalman filter[J]. Application Research of Computers, 2021, 38(3): 817-821. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202103034.htm
    [4] WILLIAMS B M, HOEL L A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results[J]. Journal of Transportation Engineering, 2003, 129(6): 664-672. doi: 10.1061/(ASCE)0733-947X(2003)129:6(664)
    [5] 吴晋武, 张海峰, 冉旭东. 基于数据约减和支持向量机的非参数回归短时交通流预测算法[J]. 公路交通科技, 2020, 37(7): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202007017.htm

    WU J W, ZHANG H F, RAN X D. Nonparametric regression short-term traffic flow prediction algorithm based on data reduction and support vector machine[J]. Journal of Highway and Transportation Research and Development, 2020, 37(7): 129-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202007017.htm
    [6] ZHENG W Z, LI D H, SHI Q X. Short-term freeway traffic flow prediction: Bayesian combined neural network approach[J]. Journal of Transportation Engineering, 2006, 132(2): 114-121. doi: 10.1061/(ASCE)0733-947X(2006)132:2(114)
    [7] 谢海红, 戴许昊, 齐远. 短时交通流预测的改进K近邻算法[J]. 交通运输工程学报, 2014, 14(3): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201403015.htm

    XIE H H, DAI X H, QI Y. Improved K-nearest neighbor algorithm for short-term traffic flow prediction[J]. Journal of Traffic and Transportation Engineering, 2014, 14(3): 87-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201403015.htm
    [8] 温惠英, 张东冉. 基于Bi-LSTM模型的高速公路交通量预测[J]. 公路工程, 2019, 44(6): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201906009.htm

    WEI H Y, ZHANG D R. Highway traffic forecast based on Bi-LSTM model[J]. Road Construction, 2019, 44(6): 51-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201906009.htm
    [9] 罗文慧, 董宝田, 王泽胜. 基于CNN-SVR混合深度学习模型的短时交通流预测[J]. 交通运输系统工程与信息, 2017, 17(5): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201705010.htm

    LUO W H, DONG B T, WANG Z S. Short-term traffic flow prediction based on CNN-SVR hybrid deep learning model[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(5): 68-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201705010.htm
    [10] 戢晓峰, 戈艺澄. 基于深度学习的节假日高速公路交通流预测方法[J]. 系统仿真学报, 2020, 32(6): 1164-1171. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ202006020.htm

    JI X F, GE Y C. Method for forecasting holiday expressway traffic flow based on deep learning[J]. Journal of System Simulation, 2020, 32(6): 1164-1171. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ202006020.htm
    [11] 刘群, 杨濯丞, 蔡蕾. 基于ETC门架数据的高速公路短时交通流预测[J]. 公路交通科技, 2022, 39(4): 123-130. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202204014.htm

    LIU Q, YANG Z C, CAI L. Prediction of short-term traffic flow on expressways based on ETC gantry data[J]. Journal of Highway and Transportation Research and Development, 2022, 39(4): 123-130. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202204014.htm
    [12] 贾兴利, 李双庆, 杨宏志, 等. 基于ATT-LSTM模型的高速公路交通事件持续时长预测[J]. 交通信息与安全, 2022, 40(5): 61-69. doi: 10.3963/j.jssn.1674-4861.2022.05.007

    JIA X L, LI S Q, YANG H Z, et al. Prediction of the duration of freeway traffic incidents based on an ATT-LSTM model[J]. Journal of Transport Information and Safety, 2022, 40(5): 61-69. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.05.007
    [13] 李桃迎, 王婷, 张羽琪. 考虑多特征的高速公路交通流预测模型[J]. 交通运输系统工程与信息, 2021, 21(3): 101-111. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202103013.htm

    LI T Y, WANG T, ZHANG Y Q. Highway traffic flow forecast model considering multiple features[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(3): 101-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202103013.htm
    [14] CAI L, LEI M, ZHANG S, et al. A noise-immune lstm network for short-term traffic flow forecasting[J]. Chaos, 2020, 30(2): 1-11.
    [15] LIU H, ZHANG X Y, YANG Y X, et al. Hourly traffic flow forecasting using a new hybrid modeling method[J]. Journal of Central South University, 2022, 29(4): 1389-1402.
    [16] FANG W, ZHUO W, YAN J, et al. Attention meets long short-term memory: a deep learning network for traffic flow forecasting[J]. Physica A: Statistical Mechanics and its Applications, 2022(587): 126485
    [17] SHI R, XU X Y, LI J M, et al. Prediction and analysis of train arrival delay based on XGBoost and Bayesian optimization[J]. Applied Soft Computing, 2021, 109: 107538.
    [18] KULSHRESTHA A, KRISHNASWAMY V, SHARMA M. Bayesian BILSTM approach for tourism demand forecasting[J]. Annals of tourism research, 2020, 83: 102925.
    [19] 陆文琦, 芮一康, 冉斌, 等. 智能网联环境下基于混合深度学习的交通流预测模型[J]. 交通运输系统工程与信息, 2020, 20(3): 47-53. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202003008.htm

    LU W Q, RUI Y K, RAN B, et al. Traffic flow prediction model based on hybrid deep learning in intelligent network environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(3): 47-53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202003008.htm
    [20] 曾宪堂, 孙昊. 高速公路短时交通流预测方法对比分析[J]. 公路, 2022, 67(2): 366-370. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202202059.htm

    ZENG X T, SUN H. Comparative analysis of short-term traffic flow forecasting methods on expressways[J]. Highway, 2022, 67(2): 366-370. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202202059.htm
    [21] 张维, 袁绍欣, 陶建军, 等. 基于多元因素的Bi-LSTM高速公路交通流预测[J]. 计算机系统应用, 2021, 30(6): 184-190. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYY202106026.htm

    ZHANG W, YUAN S X, TAO J J, et al. Bi-LSTM highway traffic flow prediction based on multiple factors[J]. Computer Systems & Applications, 2021, 30(6): 184-190. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTYY202106026.htm
    [22] 陈治亚, 王小军. 基于多维度LSTM模型的短时交通流预测[J]. 铁道科学与工程学报, 2020, 17(11): 2946-2952. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202011028.htm

    CHEN Z Y, WANG X J. Short-term traffic flow prediction based on multidimensional LSTM model[J]. Journal of Railway Science and Engineering, 2020, 17(11): 2946-2952. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202011028.htm
    [23] LU H, GE Z, SONG Y, et al. A temporal-aware LSTM enhanced by loss-switch mechanism for traffic flow forecasting[J]. Neurocomputing, 2021(427): 169-178.
    [24] WANG K, MA C, QIAO Y, et al. A hybrid deep learning model with 1DCNN-LSTM-Attention networks for short-term traffic flow prediction[J]. Physica A: Statistical Mechanics and its Applications, 2021(583): 126293.
    [25] 李明明, 雷菊阳, 赵从健. 基于LSTM-BP组合模型的短时交通流预测[J]. 计算机系统应用, 2019, 28(10): 152-156. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYY201910021.htm

    LI M M, LEI J Y, ZHAO C J. Short-term traffic flow forecasting based on LSTM-BP hybrid model[J]. Computer Systems Application, 2019, 28(10): 152-156. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTYY201910021.htm
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  567
  • HTML全文浏览量:  252
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-29
  • 网络出版日期:  2023-09-16

目录

    /

    返回文章
    返回