留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于路侧多机视频目标关联与轨迹拼接的车辆连续轨迹构建方法

刘超 罗如意 刘春青 吕能超

刘超, 罗如意, 刘春青, 吕能超. 基于路侧多机视频目标关联与轨迹拼接的车辆连续轨迹构建方法[J]. 交通信息与安全, 2023, 41(3): 80-91. doi: 10.3963/j.jssn.1674-4861.2023.03.009
引用本文: 刘超, 罗如意, 刘春青, 吕能超. 基于路侧多机视频目标关联与轨迹拼接的车辆连续轨迹构建方法[J]. 交通信息与安全, 2023, 41(3): 80-91. doi: 10.3963/j.jssn.1674-4861.2023.03.009
LIU Chao, LUO Ruyi, LIU Chunqing, LYU Nengchao. A Method for Developing Continuous Vehicle Trajectories through Target Association and Trajectory Splicing Based on Video Data from Multiple Roadside Cameras[J]. Journal of Transport Information and Safety, 2023, 41(3): 80-91. doi: 10.3963/j.jssn.1674-4861.2023.03.009
Citation: LIU Chao, LUO Ruyi, LIU Chunqing, LYU Nengchao. A Method for Developing Continuous Vehicle Trajectories through Target Association and Trajectory Splicing Based on Video Data from Multiple Roadside Cameras[J]. Journal of Transport Information and Safety, 2023, 41(3): 80-91. doi: 10.3963/j.jssn.1674-4861.2023.03.009

基于路侧多机视频目标关联与轨迹拼接的车辆连续轨迹构建方法

doi: 10.3963/j.jssn.1674-4861.2023.03.009
基金项目: 

国家自然科学基金项目 52072290

国家重点研发计划项目 2020YFB1600302

湖北省杰出青年基金项目 2020CFA081

详细信息
    作者简介:

    刘超(1998—),硕士研究生. 研究方向:交通信息与安全. E-mail: 15927510744@163.com

    通讯作者:

    吕能超(1982—),博士,研究员. 研究方向:智能网联交通、智慧公路等. E-mail: lvnengchao@163.com

  • 中图分类号: U491.4

A Method for Developing Continuous Vehicle Trajectories through Target Association and Trajectory Splicing Based on Video Data from Multiple Roadside Cameras

  • 摘要: 针对单个相机覆盖区域有限的问题,本文提出了通过路侧多个相机获取车辆连续轨迹数据的方法。在路侧端布置多台固定相机采集视频数据,采用直接线性变换算法解决相机外参造成的画面畸变问题;通过全时域抽帧提取图片训练样本,采用YOLOv5训练车辆检测模型;针对偶发的车辆漏检情形,通过完整性检查可以筛查出此类情况并修复;针对连续多帧漏检或误检导致的目标关联问题,通过异常轨迹核查算法及数据修复工具解决;针对相机斜下方区域的车辆轮廓变形问题,采用车辆检测轮廓修复算法解决车辆在不同路段检测框大小不一的问题;提出了基于车辆质心坐标匹配的方法实现相邻机位间的车辆轨迹拼接。基于上述多机视频目标关联与轨迹拼接方法,在多机位时间同步下构建了覆盖武汉珞狮路高架桥的车辆连续轨迹数据集,轨迹数据集验证结果表明:数据集涵盖从畅通到拥堵的各种交通状态,包含多段分合流区域,数据集连续时长达到3.5 h,覆盖区域1.41 km;车辆检测模型的召回率达到93.23%,准确率达到98.51%,F1分数为95.80%;数据集包含主路及各处匝道汇入的轨迹共25 734条,其中覆盖道路全域的完整长轨迹15 004条。本研究丰富了路侧多机视频目标关联与轨迹拼接方法,有助于路侧宽域车辆连续轨迹构建及交通管理与控制。

     

  • 图  1  目标关联框架

    Figure  1.  Target association framework

    图  2  临时缓存区机制

    Figure  2.  Temporary buffer mechanism

    图  3  检测框修复说明

    Figure  3.  Instruction for repairing detection box

    图  4  轨迹拼接框架

    Figure  4.  Trajectory splicing framework

    图  5  观测区域卫星地图

    Figure  5.  Satellite map of observation area

    图  6  透视变换结果

    Figure  6.  Result of direct linear transform

    图  7  珞狮路高架桥图像

    Figure  7.  Image of Luoshi Road Overpass

    图  8  车辆数据集样本

    Figure  8.  Vehicle dataset samples

    图  9  桥下被检测车辆

    Figure  9.  Detected vehicles under the overpass

    图  10  数据修复插件示例

    Figure  10.  Example of data repair plugin

    图  11  轨迹滤波

    Figure  11.  Trajectory filtering

    图  12  检测效果示意图

    Figure  12.  Schematic diagram of detection effect

    图  13  检测框位置精确性验证

    Figure  13.  Verification of accuracy of detection box position

    图  14  轨迹示意图

    Figure  14.  Trajectory diagram

    图  15  交通流参数统计

    Figure  15.  Statistics of traffic flow parameters

    表  1  模型配置参数

    Table  1.   Model configuration parameters

    训练参数名称 参数值
    训练轮次数 200
    图像批次大小 8
    初始学习率 0.01
    最终学习率 0.2
    图像输入尺寸/px 640×640
    下载: 导出CSV

    表  2  检测后输出数据结构表

    Table  2.   Data structure after detection

    列号 数据说明
    1 帧号
    2 Xleft
    3 Yleft
    4 Xright
    5 Yright
    下载: 导出CSV

    表  3  关联后轨迹统计

    Table  3.   Trajectory statistics after association

    机位 轨迹总数 异常轨迹
    1 20 408 923
    2 17 270 1 078
    3 21 444 1 434
    4 21 690 1 595
    5 21 474 1 508
    6 25 382 1 233
    下载: 导出CSV

    表  4  轨迹拼接结果

    Table  4.   Trajectory splicing result 单位:个

    机位 问题① 问题② 问题③
    1~2 35 0 9
    2~3 38 2 16
    3~4 75 0 22
    4~5 160 6 360
    5~6 31 0 17
    下载: 导出CSV

    表  5  视频数据集时空范围对比

    Table  5.   Comparison of spatiotemporal coverage of video datasets

    数据集 数据采集方式 数据空间范围/m 数据时间范围
    HighD数据集[14] 无人机航拍 420 30 min以内的离散片段,累计时长16.5 h
    南京快速路数据集[15] 无人机航拍 140~427 20 min以内的离散片段,累计时长50 min
    NGSIM数据集[16] 高空固定机位拍摄 500~640 15 min的离散片段,累计时长2.5 h
    珞狮路高架桥数据集 高空固定连续多机位拍摄 1 410 连续覆盖3.5 h
    下载: 导出CSV
  • [1] 吕伟, 黄广琛, 汪京辉. 基于元胞自动机的高速公路瓶颈交通演化仿真[J]. 交通运输系统工程与信息, 2022, 22(3): 293-302. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202203033.htm

    LYU W, HUANG G S, WANG J H. Simulation of highway traffic bottleneck via cellular automata[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(3): 293-302. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202203033.htm
    [2] SUN D H., CHEN D, ZHAO M., et al. Linear stability and nonlinear analyses of traffic waves for the general nonlinear car-following model with multi-time delays[J]. Physica A: Statistical Mechanics and its Applications. 2018, 501: 293-307. doi: 10.1016/j.physa.2018.02.179
    [3] 朱顺应, 蒋若曦, 王红, 等. 机动车交通冲突技术研究综述[J]. 中国公路学报, 2020, 33(2): 15-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202002002.htm

    ZHU S Y, JIANG R X, WANG H, et al. Review of research on traffic conflict techniques[J]. China Journal of Highway and Transport, 2020, 33(2): 15-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202002002.htm
    [4] WU K, JOVANIS P. Crashes and crash-surrogate events: Exploratory modeling with naturalistic driving data[J]. Accident Analysis & Prevention, 2012(45): 507-516.
    [5] BAGDADI O. Assessing safety critical braking events in naturalistic driving studies[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2013(16): 117-126.
    [6] PARSA A B, TAGHIPOUR H, DERRIBLE S, et al. Real-time accident detection: Coping with imbalanced data[J]. Accident Analysis & Prevention, 2019(129): 202-210.
    [7] 吕能超, 彭凌枫, 吴超仲, 等. 区分冲突类型的路段实时碰撞风险预测模型[J]. 中国公路学报, 2022, 35(1): 93-108.

    LYU N C, PENG L F, WU C Z, et al. Real-time crash-risk prediction model that distinguishes collision types[J]. China Journal of Highway and Transport, 2022, 35(1): 93-108. (in Chinese)
    [8] 关丽敏, 张倩, 楚庆玲, 等. 基于改进ICP算法的路侧双激光雷达数据融合[J]. 激光杂志, 2021, 42(9): 38-44. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202109008.htm

    GUAN L M, ZHANG Q, CHU Q L, et al. Roadside dual lidar data fusion based on improved ICP algorithm[J]. Laser Journal, 2021, 42(9): 38-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202109008.htm
    [9] 薛清文, 蒋愚明, 陆键. 基于轨迹数据的危险驾驶行为识别方法[J]. 中国公路学报, 2020, 33(6): 84-94. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202006009.htm

    XUE Q W, JIANG Y M, LU J. Risky driving behavior recognition based on trajectory data[J]. China Journal of Highway and Transport, 2020, 33(6): 84-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202006009.htm
    [10] 王俊骅, 宋昊, 景强, 等. 基于毫米波雷达组群的全域车辆轨迹检测技术方法[J]. 中国公路学报, 2022, 35(12): 181-192. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202212015.htm

    WANG J H, SONG H, JING Q, et al. Road-range tracking of vehicle trajectories based on millimeter-wave radar[J]. China Journal of Highway and Transport, 2022, 35(12): 181-192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202212015.htm
    [11] 李熙莹, 梁靖茹, 郝腾龙. 考虑连锁冲突的城市公交车行车风险量化分析方法[J]. 交通信息与安全, 2022, 40(3): 19-29. doi: 10.3963/j.jssn.1674-4861.2022.03.003

    LI X Y, LIANG J R, HAO T L. A method for quantitatively analyzing risks associated with the operation of urban buses considering chained conflicts[J]. Journal of Transport Information and Safety. 2022, 40(3): 19-29. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.03.003
    [12] WANG C, XU C C, DAI Y L. A crash prediction method based on bivariate extreme value theory and video-based vehicle trajectory data[J]. Accident Analysis & Prevention, 2019(123): 365-373.
    [13] 房锐, 张琪, 胡澄宇, 等. 基于风险矩阵的干线公路弯道路段交通冲突风险评估模型[J]. 交通运输系统工程与信息, 2021, 21(2): 166-172. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202102026.htm

    FANG R, ZHANG Q, HU C G, et al. Risk assessment model based on risk matrix for traffic conflict on arterial highway bend section[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(2): 166-172. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202102026.htm
    [14] KRAJEWSKI R, BOCK J, KLOEKER L, et al. The HighD dataset: A drone dataset of naturalistic vehicle trajectories on german highways for validation of highly automated driving systems[C]. 21st International Conference on Intelligent Transportation Systems(ITSC), Maui, HI, USA: IEEE, 2018.
    [15] 冯汝怡, 李志斌, 吴启范, 等. 航拍视频车辆检测目标关联与时空轨迹匹配[J]. 交通信息与安全, 2021, 39(2): 61-69, 77. doi: 10.3963/j.jssn.1674-4861.2021.02.008

    FENG R Y, LI Z B, WU Q F, et al. Association of vehicle object detection and the time-space trajectory matching from aerial videos[J]. Journal of Transport Information and Safety, 2021, 39(2): 61-69, 77. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.02.008
    [16] FHWA, Department of Transportation, America. NGSIM: Next generation simulation[EB/OL]. (2007-5-5)[2015-08-16]. http://www.ngsim-community.org/.
    [17] 李枫. 高速公路视频监控系统的应用及构建[J]. 电子技术与软件工程, 2023, 243(1): 159-164. https://www.cnki.com.cn/Article/CJFDTOTAL-DZRU202301033.htm

    LI F. Application and construction of expressway video monitoring system[J]. Electronic Technology and Software Engineering, 2023, 243(1): 159-164. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZRU202301033.htm
    [18] 李子腾, 施绍武, 张康. 大数据+AI收费稽核系统[J]. 中国交通信息化, 2022, 269(5): 95-98. https://www.cnki.com.cn/Article/CJFDTOTAL-JTXC202205011.htm

    LI Z T, SHI S W, ZHANG K. Big data + AI fee audit system[J]. China's Transportation Informatization, 2022, 269 (5): 95-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTXC202205011.htm
    [19] 李君羡, 童文聪, 沈宙彪, 等. 基于结构化视频数据的交叉口评估及问题自动化诊断[J]. 同济大学学报(自然科学版), 2020, 48(8): 1149-1160. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202008008.htm

    LI J X, TONG W C, SHEN Z B, et al. Intersection evaluation and automatic problem diagnosis based on structured video data[J]. Journal of Tongji University (Natural Science), 2020, 48(8): 1149-1160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202008008.htm
    [20] REDMON J, FARHADI A. YOLO9000: Better, faster, Stronger. [C]. 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, HI, USA: IEEE, 2017.
    [21] 李建国, 张睿, 王凯, 等. 基于匈牙利匹配和卡尔曼滤波的动态多目标跟踪[J]. 汽车实用技术, 2022, 47(1): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-SXQC202201011.htm

    LI J G, ZHANG R, WANG K, ET AL. Multi-object tracking algorithm based on Hungarian matching and Kalman filtering[J]. Automobile Applied Technology, 2022, 47(1): 45-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXQC202201011.htm
    [22] 李月峰, 周书仁. 在线多目标视频跟踪算法综述[J]. 计算技术与自动化, 2018, 37(1): 73-82. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJH201801016.htm

    LI Y F, ZHOU S R. Survey of online multi-object video tracking algorithms[J]. Computing Technology and Automation, 2018, 37(01): 73-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJH201801016.htm
    [23] 戴雯惠, 樊凌. 基于改进透视变换的畸变图像校正方法研究[J]. 信息通信, 2020, 215(11): 63-65. https://www.cnki.com.cn/Article/CJFDTOTAL-HBYD202011021.htm

    DAI W H, FAN L. Research on distorted image correction method based on improved perspective transform[J], Information Communication, 2020, 215(11): 63-65. https://www.cnki.com.cn/Article/CJFDTOTAL-HBYD202011021.htm
    [24] MUTHALAGU R, BOLIMERA A, KALAICHELVI V. Lane detection technique based on perspective transformation and histogram analysis for self-driving cars[J]. Computers and Electrical Engineering, 2020, 85(1): 106653.
    [25] 王德咏, 葛修润, 罗先启, 等. 基于改进DLT算法的数字近景摄影测量[J]. 上海交通大学学报, 2011, 45(增刊1): 16-20, 26. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT2011S1005.htm

    WANG D Y, GE X R, LUO X Q, et al. Study on digital close-range photogrammetry based on improved DLT algorithm[J]. Journal of Shanghai Jiao Tong University 2011, 45 (S1): 16-20, 26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT2011S1005.htm
    [26] YUN S, HAN D, CHUN S, et al. CutMix: regularization strategy to train strong classifiers with localizable features[C]. IEEE/CVF International Conference on Computer Vision(ICCV), Seoul, South Korea: IEEE, 2019.
    [27] WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[C]. The European Conference on Computer Vision(ECCV)Munich, Germany: IEEE, 2018.
    [28] 彭丁聪. 卡尔曼滤波的基本原理及应用[J]. 软件导刊, 2009, 8(11): 32-34. https://www.cnki.com.cn/Article/CJFDTOTAL-RJDK200911011.htm

    PENG D C. Basic principle and application of kalman filter[J]. Software Guide, 2009, 8(11): 32-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RJDK200911011.htm
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  546
  • HTML全文浏览量:  266
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-25
  • 网络出版日期:  2023-09-16

目录

    /

    返回文章
    返回