留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进Mask RCNN的夜间车辆检测方法

柳杰 金积德 郑庆祥

柳杰, 金积德, 郑庆祥. 基于改进Mask RCNN的夜间车辆检测方法[J]. 交通信息与安全, 2023, 41(2): 59-66. doi: 10.3963/j.jssn.1674-4861.2023.02.006
引用本文: 柳杰, 金积德, 郑庆祥. 基于改进Mask RCNN的夜间车辆检测方法[J]. 交通信息与安全, 2023, 41(2): 59-66. doi: 10.3963/j.jssn.1674-4861.2023.02.006
LIU Jie, JIN Jide, ZHENG Qingxiang. Night vehicle detection method based on improving Mask RCNN[J]. Journal of Transport Information and Safety, 2023, 41(2): 59-66. doi: 10.3963/j.jssn.1674-4861.2023.02.006
Citation: LIU Jie, JIN Jide, ZHENG Qingxiang. Night vehicle detection method based on improving Mask RCNN[J]. Journal of Transport Information and Safety, 2023, 41(2): 59-66. doi: 10.3963/j.jssn.1674-4861.2023.02.006

基于改进Mask RCNN的夜间车辆检测方法

doi: 10.3963/j.jssn.1674-4861.2023.02.006
基金项目: 

国家自然科学基金项目 52072288

面向5G产业的各项高新技术专项经费 #40120411 211

详细信息
    作者简介:

    柳杰(1996—),硕士研究生. 研究方向:人工智能与自动驾驶. E-mail:1162928850@qq.com

    通讯作者:

    郑庆祥(1970—),博士,副教授. 研究方向:人工智能深度学习、纳米技术和微电子系统等. E-mail:cmuts@yahoo.com

  • 中图分类号: U491.5+4

Night vehicle detection method based on improving Mask RCNN

  • 摘要: 传统的夜间车辆检测基于车灯特征的提取和识别,这类方法容易发生误判、检测精度和检测实时性不高。针对上述问题,本文研究了基于改进Mask RCNN(mask RCNN-night vehicle detection,Mask RCNN-NVD)的夜间车辆检测算法。将残差网络(residual network,ResNet)结构中的普通卷积修改为数量为16组的分组卷积,通过16组1×1卷积实现通道数叠加,将网络参数降至普通卷积的1/16,提升检测速度,并实现与普通卷积相同的效果;将通道注意力机制模块(squeeze-and-excitation,SE)嵌入ResNet结构中,通过2个全连接层构建瓶颈结构,将归一化权重加权到各通道特征,增强网络表征能力;在特征金字塔网络(feature pyramid networks,FPN)后加入自底向上结构,将底层特征强定位信息传递到高层语义特征中;加入自适应池化层,根据区域候选网络(region proposal network,RPN)产生的候选区域分配至不同尺度特征图中,并在底层特征与各阶段最高层特征之间加入跳跃连接结构,实现缩减模型参数的同时保留模型的全局表征能力。通过对开源数据集Microsoft common objects in context(MS COCO)、Berkeley deep drive 100K(BDD100K)的夜间行车图像进行数据增强,构建用于评估检测性能的测试集2 000张。实验结果表明:算法在测试集上的平均精度(mean Average Precsion,mAP)值高达92.62,每秒图像处理帧数(Frames Per Second,FPS)值高达30帧。相比于原始Mask RCNN算法分别在mAP值上提高1.68,FPS值提高4帧,验证提出的方法可以有效提升夜间车辆检测的准确性和实时性。

     

  • 图  1  ResNet残差块普通卷积与ResNet-SE残差块分组卷积

    Figure  1.  ResNet residual block normal convolution and ResNet-SE residual block group convolution

    图  2  普通卷积与分组卷积

    Figure  2.  normal convolution and k group convolution

    图  3  SE注意力模块

    Figure  3.  SE Attention Module

    图  4  双向融合FPN网络结构

    Figure  4.  The network architecture of bidirectional converged FPN

    图  5  分类预测网络结构

    Figure  5.  The network architecture of fully connected layer

    图  6  Mask RCNN-NVD算法流程图

    Figure  6.  The Algorithm flowchart of Mask RCNN-NVD

    图  7  Mask RCNN-NVD网络结构图

    Figure  7.  The network structure diagram of Mask RCNN-NVD

    图  8  LabelImg对图像中车辆进行标记

    Figure  8.  Labelimg marks the vehicle in the image

    图  9  不同场景下车检测效果

    Figure  9.  Effect of multi-vehicle detection in different scenarios

    图  10  复杂场景下的检测效果

    Figure  10.  Detection effect in complex scenes

    图  11  存在对向来车和同向有车的场景下的检测效果

    Figure  11.  Detection effect in the scene of opposite direction vehicles and vehicles in the same direction

    表  1  实验参数

    Table  1.   Experimental parameters

    参数 取值
    迭代轮数 300
    输入数据批次 4
    输入图像尺寸 800×600
    初始学习率 0.001
    动量参数 0.9
    下载: 导出CSV

    表  2  Mask RCNN与Mask RCNN-NVD混淆矩值对比

    Table  2.   Comparison of Mask RCNN and Mask RCNN-NVD confusion moment values

    算法 Tp Fp Tn Fn
    Mask RCNN 2 450 203 215 259
    Mask CNN-NVD 2 528 151 186 207
    下载: 导出CSV

    表  3  不同算法实验结果对比

    Table  3.   Comparison of experimental results of different algorithms

    算法 精确率/% 召回率/% mAP FPS/(帧/s)
    YOLOv3 83.65 81.19 81.92 36
    SSD300 83.61 77.38 81.10 38
    Faster RCNN 90.62 86.67 88.49 25
    Mask RCNN 92.36 90.41 90.94 28
    Mask RCNN-NVD 94.36 92.42 92.62 32
    下载: 导出CSV
  • [1] 胡忆平. 基于深度学习的夜间车辆检测算法研究[D]. 长沙: 湖南大学, 2020.

    HU Y P. Research on nighttime vehicle detection algorithm based on deep learning [D]. Changsha: Hunan University, 2020. (in Chinese)
    [2] 李慧, 白鹏飞, 李世晓, 等. 基于车灯特征的夜间车辆检测方法[J]. 电子测量技术, 2020, 43(14): 89-95. doi: 10.19651/j.cnki.emt.2004290

    LI H, BAI P F, LI S X, et al. Nighttime vehicle detection method based on headlight features[J]. Electronic Measurement Technology, 2020, 43(14): 89-95. (in Chinese) doi: 10.19651/j.cnki.emt.2004290
    [3] WU B F, CHEN Y L, CHIU C C. A discriminant analysis based recursive automatic thresholding approach for image segmentation[J]. IEICE Transactions on Information and Systems, 2005, 88(7): 1716-1723.
    [4] PARVIN S, ROZARIO L J, ISLAM M E. Vision-based on-road nighttime vehicle detection and tracking using taillight and headlight features[J]. Journal of Computer and Communications, 2021, 9(3): 29-36. doi: 10.4236/jcc.2021.93003
    [5] KAVYA T S, TSOGTBAATAR E, JANG Y M, et al. Night-time vehicle detection based on brake/tail light color[C]. 2018 International SoC Design Conference(ISOCC), Daegu, Korea: IEEE, 2018.
    [6] AHMAD A, JACK A P, ARLAN A G. Detection and classification of vehicles for traffic video analytics[J]. Procedia Computer Science, 2018(144): 259-268.
    [7] MIAO Y, LIU F, HOU T, et al. A nighttime vehicle detection method based on yolo v3[C]. 2020 Chinese Automation Congress(CAC), Shanghai, China: IEEE, 2020.
    [8] HUANG S, HE Y, CHEN X. M-YOLO: A nighttime vehicle detection methodcombining mobilenet v2 and yolo v3[J]. Journal of Physics: Conference Series, 2021, 1883(1): 012094. doi: 10.1088/1742-6596/1883/1/012094
    [9] HE K, GKIOXARI G, DOLLAR P, et al. Mask r-cnn[C]. The IEEE International Conference On Computer Vision, Venice, Italy: ICCV, 2017.
    [10] LOU L, ZHANG Q C, LIU M, et al. Detecting and counting the moving vehicles using mask R-CNN[C]. IEEE 8th Data Driven Control and Learning Systems Conference, Dali, China: IEEE, 2019.
    [11] 杨鹏强, 张艳伟, 胡钊政. 基于改进RepVGG网络的车道线检测算法[J]. 交通信息与安全, 2022, 40(2): 73-81. doi: 10.3963/j.jssn.1674-4861.2022.02.009

    YANG P Q, ZHANG Y W, HU Z Z. Lane-line detection algorithm based on improved RepVGG network[J]. Journal of Transport Information and Safety, 2022, 40(2): 73-81. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.02.009
    [12] PANT G, YADAV D P, GAUR A. ResneXt convolution neural network topology-based deep learning model for identification and classification of pediastrum[J]. Algal Research, 2020, 48: 101932. doi: 10.1016/j.algal.2020.101932
    [13] WANG K, LIEW J H, ZOU Y, et al. Panett: few-shot image semantic segmentation with prototype alignment[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, South Korea: ICCV, 2019.
    [14] LIU W, ANGUELOV D, ERHAN D, et al. Ssd: single shot multibox detector[C]. Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, Netherlands: ECCV, 2016.
    [15] SUN X, WU P, HOI S C H. Face detection using deep learning: An improved faster RCNN approach[J]. Neurocomputing, 2018(299): 42-50.
    [16] 刘勃, 周荷琴, 魏铭旭. 基于颜色和运动信息的夜间车辆检测方法[J]. 中国图象图形学报: A辑, 2005, 10(2): 187-191. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200502008.htm

    LIU B, ZHOU H Q, WEI M X. Night vehicle detection method based on color and motion information[J]. Chinese Journal of image and graphics: Series A, 2005, 10(2): 187-191(in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200502008.htm
    [17] 祁秋红, 陈启兴. 基于尾灯跟踪的夜间车辆检测[J]. 通信技术, 2012, 45(10): 58-60. https://www.cnki.com.cn/Article/CJFDTOTAL-TXJS201210020.htm

    QI Q H, CHEN Q X. Night vehicle detection based on tail light tracking[J]. Communication technology, 2012, 45(10): 58-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TXJS201210020.htm
    [18] VARGAS M, MILLA J M, TORAL S L, et al. An enhanced background estimation algorithm for vehicle detection in urban traffic scenes[J]. IEEE Transactions on Vehicular Technology, 2010, 59(8): 3694-3709.
    [19] LIU Y, QIU T, WANG J, et al. A nighttime vehicle detection method with attentive GAN for accurate classification and regression[J]. Entropy, 2021, 23(11): 1490.
    [20] LEUNG H K, CHEN X Z, YU C W, et al. A deep-learning-based vehicle detection approach for insufficient and nighttime illumination conditions [J]. Applied Sciences, 2019, 9(22): 4769.
    [21] 周君, 包旭, 高焱, 等. 基于模式识别与ST-MRF相结合的车辆检测方法[J]. 交通信息与安全, 2021, 39(2): 95-100. doi: 10.3963/j.jssn.1674-4861.2021.02.012

    ZHOU J, BAO X, GAO Y, et al. A vehicle detection method based on pattern recognition combined with ST-MRF [J]. Journal of Transport Information and Safety, 2021, 39(2): 95-100. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.02.012
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  832
  • HTML全文浏览量:  434
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-09
  • 网络出版日期:  2023-06-19

目录

    /

    返回文章
    返回