留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

常态化疫情防控阶段旅客中长距离城际出行联合选择行为建模

方瑞韬 邵海鹏 林涛

方瑞韬, 邵海鹏, 林涛. 常态化疫情防控阶段旅客中长距离城际出行联合选择行为建模[J]. 交通信息与安全, 2023, 41(1): 151-160. doi: 10.3963/j.jssn.1674-4861.2023.01.016
引用本文: 方瑞韬, 邵海鹏, 林涛. 常态化疫情防控阶段旅客中长距离城际出行联合选择行为建模[J]. 交通信息与安全, 2023, 41(1): 151-160. doi: 10.3963/j.jssn.1674-4861.2023.01.016
FANG Ruitao, SHAO Haipeng, LIN Tao. A Joint Mode Choice Behavior Model of Long-distance Intercity Passenger Travel during the Periods with Regular Epidemic Prevention and Control Measures[J]. Journal of Transport Information and Safety, 2023, 41(1): 151-160. doi: 10.3963/j.jssn.1674-4861.2023.01.016
Citation: FANG Ruitao, SHAO Haipeng, LIN Tao. A Joint Mode Choice Behavior Model of Long-distance Intercity Passenger Travel during the Periods with Regular Epidemic Prevention and Control Measures[J]. Journal of Transport Information and Safety, 2023, 41(1): 151-160. doi: 10.3963/j.jssn.1674-4861.2023.01.016

常态化疫情防控阶段旅客中长距离城际出行联合选择行为建模

doi: 10.3963/j.jssn.1674-4861.2023.01.016
基金项目: 

国家重点研发计划项目 2019YFB1600302

详细信息
    作者简介:

    方瑞韬(1998—),硕士研究生.研究方向:出行行为. E-mail:fangruitao@chd.edu.cn

    通讯作者:

    邵海鹏(1978—),博士,教授.研究方向:交通设计、出行行为等. E-mail:shaohp@chd.edu.cn

  • 中图分类号: U125

A Joint Mode Choice Behavior Model of Long-distance Intercity Passenger Travel during the Periods with Regular Epidemic Prevention and Control Measures

  • 摘要: 新冠肺炎疫情对旅客中长距离的城际交通出行影响巨大,现有研究侧重疫情暴发初期疫情对城际交通出行的影响,针对常态化疫情防控阶段旅客城际出行选择行为的研究相对较少,因此,本文旨在研究常态化疫情防控阶段旅客中长距离城际出行选择行为。针对民航、高铁、普铁和自驾等方式分别建立包含4种城际出行方式的多指标多因果出行选择模型(MIMIC),模型中引入感知防疫安全程度、防疫策略、乘车体验与出行习惯4个潜变量,探究潜变量与观测变量的因子载荷并辨识模型参数,求取各潜变量的拟合值;在此基础上建立考虑出行方式特性、旅客社会经济属性与潜变量的多出行方式联合选择行为模型(MIMIC-Logit),探究常态化疫情防控阶段旅客出行心理对其出行决策的影响;假设出行费用、时间与距离等变量的随机系数服从正态分布,采用抽样1000次的Halton序列对随机系数进行仿真求解,得到随机系数的回归分析结果。以2021年4月—6月到达西安旅客的调查数据为例进行实证研究,结果发现:所提MIMIC-Logit模型的拟合优度与命中率分别为43.621%与83.312%,均高于多项Logit模型与随机系数Logit模型;旅客对不同方式的出行费用、时间与距离的偏好具有异质性,且出行方式特性、社会经济属性与潜变量都对出行选择的效用有显著影响。弹性分析表明,当感知防疫安全程度与防疫策略提升了100%时,旅客选择民航出行的概率分别提升了23.207%与21.349%;而当乘车体验提升了100%时,旅客选择高铁出行的概率提升了18.229%。综上,所提方法揭示了潜变量对旅客出行选择行为的显著影响;通过提升感知防疫安全程度、防疫策略与乘车体验等手段,可以提升旅客选择高铁、民航出行的概率。

     

  • 图  1  MIMIC-Logit模型的框架

    Figure  1.  The framework of MIMIC-Logit integrated model

    图  2  MIMIC模型的结构

    Figure  2.  The structure of the MIMIC model

    图  3  MIMIC模型求解结果

    Figure  3.  Results of MIMIC model

    图  4  潜变量对出行方式选择概率的弹性

    Figure  4.  Elasticity of latent variables to intercity travel mode choice

    表  1  潜变量与其指标观测变量的对应关系

    Table  1.   The relationship between latent variables and their indicators

    潜变量 变量代码 指标观测变量
    感知防疫安全程度 PS 我认为该方式的防疫服务水平是安全的
    我认为该方式能提供有效的防疫保障措施
    我认为乘坐该方式不增加疫情防控的难度
    防疫策略 S 我认为该方式的消杀通风程度很好
    我认为该方式能保持旅客间的安全距离
    我认为该方式的防疫宣传很好
    乘车体验 TE 我认为该方式的内部环境很好
    我认为该方式的座椅舒适
    我认为该方式传播病毒的概率较低
    我认为该方式的防疫设施完善
    出行习惯 H 即使出现疫情,该方式仍然是我的最优选择
    疫情影响下,我更倾向于乘坐该方式
    疫情爆发前,我乘坐该方式的频率很高
    下载: 导出CSV

    表  2  显变量定义

    Table  2.   Definition of observable variables

    类别 变量名称 变量代码 变量解释
    出行特征 城市等级 CL 一线城市;二线城市;三线城市;四线城市
    出行距离/km D 出发城市与到达城市之间的直线距离
    出行费用/元 CO 城际出行总费用
    出行时长/h T 0~2;>2~3;>3~4;>4~5;>5~6;>6
    换乘次数 CH 无需换乘;1次换乘;超过1次换乘
    出发时刻 DT 当日13:00之前;当日13:00之后
    天气 W 晴天;多云;雨、雪、雾等
    行李数 B 有无大件行李
    同行人数/人 P 0;1;≥ 2
    出行目的 PU 旅游;其他
    社会经济属性 月收入/元 I 0~3 000;>3 000~6 000;>6 000~9 000;>9 000~12 000;>12 000
    受教育程度 E 初中及以下;高中/中专;大专;本科;硕士及以上
    职业 J 学生;国有企业;事业单位;公务员;民营企业;外资企业
    年龄/岁 A 0~20;>20~26;>26~32;>32~39;>39~46;>46~53;>53
    性别 G 男;女
    小汽车拥有量 CA 是;否
    下载: 导出CSV

    表  3  MIMIC模型拟合度评价指标

    Table  3.   Fitness evaluation index of the MIMIC model

    拟合度评价指标 MIMIC-P模型 MIMIC-H模型 MIMIC-T模型 MIMIC-C模型 推荐范围
    实际值 实际值 实际值 实际值
    CMIN/df 1.665 1.533 1.776 1.543 < 3.0
    RMSEA 0.045 0.036 0.044 0.041 < 0.05
    GFI 0.917 0.918 0.907 0.916 >0.90
    CFI 0.975 0.976 0.957 0.976 >0.90
    TLI 0.966 0.974 0.958 0.971 >0.90
    注:MIMIC-P模型、MIMIC-H模型、MIMIC-T模型,以及MIMIC-C模型分别为民航、高铁、普铁以及自驾出行的MIMIC模型。
    下载: 导出CSV

    表  4  MIMIC模型的结构模型结果

    Table  4.   Results of the structure model

    方式 潜变量 E J A G I CA
    民航 PS 0.127 0.097
    S 0.114 0.106 0.094
    TE 0.108 0.131
    H 0.151 -0.126
    高铁 PS 0.134 0.094
    S 0.131 0.120 0.108
    TE 0.137 0.114
    H 0.136 -0.154
    普铁 PS 0.144 0.093
    S 0.106 0.135 0.117
    TE 0.103 0.127
    H 0.121 -0.099
    自驾 PS 0.114 0.095
    S 0.154 0.098 0.108
    TE 0.132 0.115 0.138
    H 0.128 0.117
    注:表中参数值均满足p < 0.1的显著性检验。
    下载: 导出CSV

    表  5  MNL模型与MIMIC-Logit模型的回归分析结果

    Table  5.   Regression analysis results of MNL model and MIMIC-Logit integrated model

    变量 MNL模型 随机系数Logit模型 MIMIC-Logit模型
    高铁 普铁 自驾 高铁 普铁 自驾 高铁 普铁 自驾
    出行方式特征 CO -0.079*** -0.093* 0.041*** -0.096*** -0.046* 0.037*** -0.075*** -0.067** 0.043***
    T -0.256** 0.647* -0.624* -0.156* 0.732* -0.557**
    D -0.017* 0.033** -0.074* -0.035* 0.030** -0.079* -0.013** 0.040** -0.061*
    DT -0.876* -1.403* -0.880* -1.432* -0.833* -1.275*
    W 0.705* -0.108* 0.776* -0.119* 0.376** -0.274*
    B 0.064* 0.332** 0.058* 0.339** 0.096** 0.338**
    P -0.196* 0.048** -0.198* 0.042** -0.142** 0.083*
    社会经济属性 CA -0.224** -0.330** 1.486*** -0.236** -0.358** 1.320*** -0.245** -0.330** 1.375***
    E -0.427** -0.641** -0.441** -0.627** -0.461** -0.602**
    A 0.457** 0.159* -0.267** 0.466** 0.143* -0.257** 0.448** 0.165* -0.264**
    G 0.132** 0.170** -0.162** 0.158** 0.186** -0.164** 0.180** 0.196** -0.142**
    I -0.664* -0.830** -0.770** -0.667* -0.833** -0.756** -0.643* -0.827** -0.763**
    潜变量 PS -0.658** -0.440** -1.405***
    S -0.426* -0.236** -0.649*
    TE -0.214* 0.089* -0.423**
    H -0.246* 1.442** 1.907*
    常数项 CON -2.332** -1.661* -3.049** -2.368** -1.627* -3.421** -1.033** 0.356** -1.744***
    对数似然估计值 -808.232 -787.306 -729.513
    拟合优度比/% 34.713 36.422 43.621
    命中率/% 77.89 79.83 83.31
    注:*,**,***表示显著性水平为1%,5%,10%;随机系数Logit模型与MIMIC-Logit模型中,COTD的参数结果为其服从正态分布的均值。
    下载: 导出CSV

    表  6  需求弹性估计值

    Table  6.   Demand elasticity estimates

    出行方式 CO D PS S TE
    民航 0.140 -0.124 -0.233 -0.208 -0.048
    高铁 -0.123 -0.115 -0.091 -0.139 -0.176
    普铁 -0.158 -0.076 -0.154 -0.057 -0.033
    自驾 0.059 -0.118 -0.172 -0.174 -0.080
    下载: 导出CSV
  • [1] 交通运输部. 2020年交通运输行业发展统计公报[J]. 交通财会, 2021(6): 92-97. doi: 10.3969/j.issn.1005-9016.2021.06.025

    Ministry of Transport. Statistics of transportation industry in 2020[J]. Finance & Accounting for Transport, 2021(6): 92-97. (in Chinese) doi: 10.3969/j.issn.1005-9016.2021.06.025
    [2] 叶玉玲, 韩明初, 陈俊晶. 基于出行链的城际旅客出行方式选择行为[J]. 同济大学学报(自然科学版), 2018, 46(9): 1234-1240.

    YE Y L, HAN M C, CHEN J J. Intercity passenger travel mode choice behavior based on trip chain[J]. Journal of Tongji University(Natural Science), 2018, 46(9): 1234-1240. (in Chinese)
    [3] 滕靖, 薛晖. 考虑出行者异质性的城际出行选择行为研究[J]. 铁道运输与经济, 2020, 42(增刊1): 60-66, 80. doi: 10.16668/j.cnki.issn.1003-1421.2020.13.10

    TENG J, XUE H. A study on intercity travel choice behavior based on traveler heterogeneity[J]. Railway Transport and Economy, 2020, 42(S1): 60-66, 80. (in Chinese) doi: 10.16668/j.cnki.issn.1003-1421.2020.13.10
    [4] LI X W, TANG J Q, HU X J, et al. Assessing intercity multimodal choice behavior in a touristy city: A factor analysis[J]. Journal of Transport Geography, 2020, 86: 102776. doi: 10.1016/j.jtrangeo.2020.102776
    [5] 景鹏, 隽志才, 查奇芬. 扩展计划行为理论框架下基于MIMIC模型的城际出行行为分析[J]. 管理工程学报, 2016, 30(4): 61-68. doi: 10.13587/j.cnki.jieem.2016.04.008

    JING P, JUAN Z C, ZHA Q F. Application of the expanded theory of planned behavior in intercity travel behavior based on MIMIC model[J]. Journal of Industrial Engineering and Engineering Management, 2016, 30(4): 61-68. (in Chinese) doi: 10.13587/j.cnki.jieem.2016.04.008
    [6] BORHAN M N, IBRAHIM A N H, MISKEEN M A. A. Extending the theory of planned behaviour to predict the intention to take the new HSR for intercity travel in Libya: Assessment of the influence of novelty seeking, trust and external influence[J]. Transportation Research Part A: Policy and Practice, 2019, 130: 373-384. doi: 10.1016/j.tra.2019.09.058
    [7] ZHAO P J, GAO Y K. Public transit travel choice in the post COVID-19 pandemic era: An application of the extended theory of planned behavior[J]. Travel Behaviour and Society, 2022, 28: 181-195. doi: 10.1016/j.tbs.2022.04.002
    [8] CHEN C, FENG T, GU X N. Role of latent factors and public policies in travel decisions under COVID-19 pandemic: Findings of a hybrid choice model[J]. Sustainable Cities and Society, 2022, 78: 103601. doi: 10.1016/j.scs.2021.103601
    [9] 刘建荣, 郝小妮, 石文瀚. 新冠疫情对老年人公交出行行为的影响[J]. 交通运输系统工程与信息, 2020, 20(6): 71-76, 98.

    LIU J R, HAO X N, SHI W H. Impact of COVID-19 on the elderly's bus travel behavior[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20 (6): 71-76, 98. (in Chinese)
    [10] 石京, 龙昱茜. 新冠疫情对居民休闲出行影响研究[J]. 中国公路学报, 2022, 35(1): 238-251. doi: 10.3969/j.issn.1001-7372.2022.01.021

    SHI J, LONG Y X. Research on the impacts of the COVID-19 on individual's leisure travel[J]. China Journal of Highway and Transport, 2022, 35(1): 238-251. (in Chinese) doi: 10.3969/j.issn.1001-7372.2022.01.021
    [11] LUAN S L, YANG Q F, JIANG Z T, et al. Exploring the impact of COVID-19 on individual's travel mode choice in China[J]. Transport Policy, 2021, 106: 271-280. doi: 10.1016/j.tranpol.2021.04.011
    [12] 张小雨, 邵春福, 王博彬, 等. 新冠疫情影响下居民共享出行方式选择行为研究[J]. 交通运输系统工程与信息, 2022, 22(2): 186-196, 205. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202202018.htm

    ZHANG XY, SHAO C F, WANG B B, et al. Travel mode choice analysis with shared mobility in context of COVID-19[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(2): 186-196, 205. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202202018.htm
    [13] 骆晨, 董青, 姚擎, 等. 突发公共卫生事件持续期居民中长距离出行方式选择行为研究[J]. 交通运输系统工程与信息, 2020, 20(6): 57-62.

    LUO C, DONG Q, YAO Q, et al. Behavior of long-distance travel mode choice under the duration of public health emergencies[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(6): 57-62. (in Chinese)
    [14] 李涛, 李宇, 戴靓, 等. COVID-19疫情影响下的"五一" 小长假城际出行特征与影响因素[J]. 地理研究, 2021, 40 (11): 3225-3241. doi: 10.11821/dlyj020201279

    LI T, LI Y, DAI L, et al. Characteristics and influencing factors of intercity travel during the May Day holiday under the influence of the COVID-19 outbreak in China[J]. Geographical Research, 2021, 40(11): 3225-3241. (in Chinese) doi: 10.11821/dlyj020201279
    [15] 孙连娇, 戢晓峰, 陈方. 欠发达地区中长距离出行方式选择行为机理研究[J]. 公路交通科技, 2019, 36(1): 131-137. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201901018.htm

    SUN L J, JI X F, CHEN F. Study on travel mode choice mechanism of middle and long distance in underdeveloped areas[J]. Journal of Highway and Transportation Research and Development, 2019, 36(1): 131-137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201901018.htm
    [16] 刘志伟, 宋正沄, 邓卫, 等. 无人驾驶汽车对中短距离市际出行方式选择行为的影响[J]. 交通信息与安全, 2022, 40(2): 91-97. doi: 10.3963/j.jssn.1674-4861.2022.02.011

    LIU Z W, SONG Z Y, DENG W, et al. Impacts of autonomous vehicles on mode choice behavior in the context of short-medium distance intercity travel[J]. Journal of Transport Information and Safety, 2022, 40(2): 91-97. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.02.011
    [17] 张昕明, 弓棣, 谢秉磊, 等. 计划行为理论视角下基于出行行为的公交防疫策略影响效果研究[J]. 交通信息与安全, 2021, 39(6): 117-125. doi: 10.3963/j.jssn.1674-4861.2021.06.014

    ZHANG X M, GONG D, XIE B L, et al. A study of the effectiveness of epidemic prevention policies on public transit usage based on the theory of planned behaviors[J]. Journal of Transport Information and Safety, 2021, 39(6): 117-125. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.06.014
    [18] 原雅丽, 杨小宝, 李虹慧, 等. 突发事件下城市群内旅客城际出行方式选择行为[J]. 清华大学学报(自然科学版), 2022, 62(7): 1142-1150. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202207005.htm

    YUAN Y L, YANG X B, LI H H, et al. Intercity travel mode choice behavior of travelers in large urban regions during emergencies[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(7): 1142-1150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202207005.htm
    [19] NETO I L, MATSUNAGA L H, MACHADO C C, et al. Psychological determinants of walking in a Brazilian sample: An application of the theory of planned behavior[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 73: 391-398.
    [20] SCHNEIDERF, ENSTEDH. Shadow economies: Size, causes, and consequences[J]. Journal of Economic Literature, 2000, 38(1): 77-114.
    [21] BEN-AKIVA M, WALKER J, BERNARDINO A T, et al. Integration of choice and latent variable models[J]. Perpetual Motion: Travel Behaviour Research Opportunities and Application Challenges, 2002(1): 431-470.
    [22] RAMEZANI S, LAATIKAINEN T, HASANZADEH K, et al. Shopping trip mode choice of older adults: An application of activity space and hybrid choice models in understanding the effects of built environment and personal goals[J]. Transportation, 2021, 48(2): 505-536.
    [23] PRASETYO Y T, CASTILLO A M, SALONGA L J, et al. Factors affecting perceived effectiveness of COVID-19 prevention measures among Filipinos during enhanced community quarantine in Luzon, Philippines: Integrating protection motivation theory and extended theory of planned behavior[J]. International Journal of Infectious Diseases, 2020, 99: 312-323.
    [24] 陈坚, 傅志妍, 钟异莹. 心理因素影响的公交方式选择行为模型[J]. 交通运输系统工程与信息, 2017, 17(3): 120-126, 142.

    CHEN J, FU Z Y, ZHONG Y Y. Choice behavior model of urban public transport considered the psychological factors affecting[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(3): 120-126, 142. (in Chinese)
    [25] NICOLA M, O'NEILL N, SOHRABI C, et al. Evidence based management guideline for the COVID-19 pandemic-Review article[J]. International Journal of Surgery, 2020, 77: 206-216.
    [26] LI X, XU S, YU M, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan[J]. Journal of Allergy and Clinical Immunology, 2020, 146(1): 110-118.
    [27] GUO Y Y, ZHOU J B, WU Y, et al. Identifying the factors affecting bike-sharing usage and degree of satisfaction in Ningbo, China[J]. PLOS ONE, 2017, 12(9): e0185100.
    [28] 陈月霞, 陈龙, 查奇芬, 等. 基于低碳心理潜变量Logit模型的出行方式预测模型[J]. 公路交通科技, 2017, 34(9): 100-108, 137. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201709015.htm

    CHEN Y X, CHEN L, ZHA Q F, et al. A travel mode forecasting model based on low-carbon psychological latent variable logit model[J]. Journal of Highway and Transportation Research and Development, 2017, 34(9): 100-108, 137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201709015.htm
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  644
  • HTML全文浏览量:  215
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-01
  • 网络出版日期:  2023-05-13

目录

    /

    返回文章
    返回