留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进U型神经网络的路面裂缝检测方法

惠冰 李远见

惠冰, 李远见. 基于改进U型神经网络的路面裂缝检测方法[J]. 交通信息与安全, 2023, 41(1): 105-114. doi: 10.3963/j.jssn.1674-4861.2023.01.011
引用本文: 惠冰, 李远见. 基于改进U型神经网络的路面裂缝检测方法[J]. 交通信息与安全, 2023, 41(1): 105-114. doi: 10.3963/j.jssn.1674-4861.2023.01.011
HUI Bing, LI Yuanjian. A Detection Method for Pavement Cracks Based on an Improved U-Shaped Network[J]. Journal of Transport Information and Safety, 2023, 41(1): 105-114. doi: 10.3963/j.jssn.1674-4861.2023.01.011
Citation: HUI Bing, LI Yuanjian. A Detection Method for Pavement Cracks Based on an Improved U-Shaped Network[J]. Journal of Transport Information and Safety, 2023, 41(1): 105-114. doi: 10.3963/j.jssn.1674-4861.2023.01.011

基于改进U型神经网络的路面裂缝检测方法

doi: 10.3963/j.jssn.1674-4861.2023.01.011
基金项目: 

国家重点研发计划项目 2021YFB2601000

国家自然科学基金项目 52178409

内蒙古自治区交通运输科技项目 NJ-2021-17

详细信息
    通讯作者:

    惠冰(1982—),博士,副教授.研究方向:路面检测与养护管理

  • 中图分类号: U491.2

A Detection Method for Pavement Cracks Based on an Improved U-Shaped Network

  • 摘要: 针对传统的裂缝分割算法难以识别狭窄裂缝且分割边缘不精准,从而造成识别精度较低的问题,研究了基于改进U型神经网络(Unet)的路面裂缝检测方法。由于传统Unet特征提取网络是层次较浅的浅层神经网络,难以提取更复杂的裂缝特征信息,故本文以牛津大学视觉几何组网络(VGG16)作为传统Unet的特征提取网络,提高网络的裂缝特征提取能力;为抑制高低阶特征融合时产生的无用特征,本文在模型解码部分添加压缩与激励单元(SE block),构建裂缝注意力单元,使得网络可以关注不同通道下的裂缝特征,建立了基于SE block和VGG16的改进Unet网络(SE-VUnet)。研究采用迁移学习的方法,将在ImageNet上预训练好的VGG16网络权重迁移到裂缝检测中。通过挑选Crack500数据集,并使用摄像头采集图片构建1 600张路面裂缝数据集,再次训练SE-VUnet模型,获得裂缝区域分割结果。以查准率(precision)与查全率(recall)的加权调和平均值F1和雅卡尔(Jaccard)相似系数作为量化评价指标。将SE-VUnet分别与Unet、SOLO v2、Mask R-CNN以及Deeplabv3+进行分割效果和实时性对比。研究结果表明:SE-VUnet模型的综合F1和雅卡尔系数分别为0.840 3和0.722 1,相比于Unet分别高出了1.04%和1.51%,且均高于其他3种对比模型;SE-VUnet的单帧图片预测时间为89 ms,在分割效果提升明显的情况下仅比Unet慢5 ms,优于其他模型。

     

  • 图  1  整体流程图

    Figure  1.  Overall flow chart

    图  2  网络模型结构

    Figure  2.  Structures of network models

    图  3  SE-VUnet模型

    Figure  3.  The SE-VUnet model

    图  4  Unet编码结构与本文特征提取网络

    Figure  4.  Unet encoding structure and feature extraction network of this paper

    图  5  SE block结构

    Figure  5.  SE block

    图  6  Unet解码结构改进

    Figure  6.  Improvement of Unet decoding structure

    图  7  传统机器学习和迁移学习对比

    Figure  7.  Comparison of traditional machine learning and transfer learning

    图  8  图像采集平台

    Figure  8.  Image acquisition platform

    图  9  路面裂缝图像示例

    Figure  9.  Pavement crack image

    图  10  SE-VUnet与Unet的F1和雅卡尔系数

    Figure  10.  F1 and Jaccard coefficients of SE-VUnet and Unet

    图  11  狭长裂缝分割结果

    Figure  11.  Long and narrow crack segmentation result

    图  12  宽裂缝预测结果

    Figure  12.  Non-narrow crack segmentation result

    图  13  路面裂缝在多个模型下的测试结果

    Figure  13.  Test results of pavement cracks under multiple models

    图  14  多个模型在裂缝宽度较窄和对比度较低情况下的分割结果

    Figure  14.  Segmentation results of multiple models in the case of narrow crack width and low contrast

    表  1  试验数据

    Table  1.   Experimental data

    训练验证集 数量/张 测试集 数量/张
    狭长裂缝 498 狭长裂缝 91
    宽裂缝 852 宽裂缝 159
    下载: 导出CSV

    表  2  不同模型的推理时间

    Table  2.   Inference time of different models

    模型 推理时间/s
    SE-VUnet 0.089
    Unet 0.084
    SOLO v2 0.130
    Mask R-CNN 0.162
    Deeplabv3+ 0.093
    文献[10] 0.360
    下载: 导出CSV

    表  3  不同模型的F1和Jaccard指标

    Table  3.   F1 and Jaccard coefficients of different models

    模型 Precision Recall F1 Jaccard
    SE-VUnet 0.803 1 0.881 2 0.840 3 0.722 1
    Unet 0.805 3 0.856 4 0.829 9 0.707 0
    SOLO v2 0.835 3 0.813 9 0.824 5 0.702 1
    Mask R-CNN 0.633 2 0.733 1 0.679 5 0.511 7
    Deeplabv3+ 0.863 4 0.533 3 0.659 4 0.501 0
    下载: 导出CSV
  • [1] 马建, 赵祥模, 贺拴海, 等. 路面检测技术综述[J]. 交通运输工程学报, 2017, 17(5): 121-137. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201705012.htm

    MA J, ZHAO X M, HE S H, et al. Review of pavement detection technology[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 121-137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201705012.htm
    [2] AMHAZ R, CHAMBON S, IDIER J, et al. Automatic crack detection on 2D pavement images: An algorithm based on minimal path selection[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(10): 2718-2729. doi: 10.1109/TITS.2015.2477675
    [3] PENG L, CHAO W, LI S, et al. Research on crack detection method of airport runway based on Twice-Threshold segmentation[C]. 5th International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC), Qinhuangdao, China: IEEE, 2015.
    [4] 王兴建, 秦国锋, 赵慧丽. 基于多级去噪模型的路面裂缝检测方法[J]. 计算机应用, 2010, 30(6): 1606-1609, 1612. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201006051.htm

    WANG X J, QIB G F, ZHAO H L. Pavement crack detection method based on multilevel denoising model[J]. Journal of Computer Applications, 2010, 30(6): 1606-1609, 1612. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201006051.htm
    [5] 张志华, 邓砚学, 张新秀. 基于改进SegNet的沥青路面病害提取与分类方法[J]. 交通信息与安全, 2022, 40(3): 127-135. doi: 10.3963/j.jssn.1674-4861.2022.03.013

    ZHANG Z H, DENG Y X, ZHANG X X. A method for detecting and differentiating asphalt pavement distress based on an improved SegNet algorithm[J]. Journal of Transport Information and Safety, 2022, 40(3): 127-135. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.03.013
    [6] ZHAO H, QIN G, WANG X. Improvement of canny algorithm based on pavement edge detection[C]. 3rd International Congress on Image and Signal Processing, Yantai, China: IEEE, 2010.
    [7] SALMAN M, MATHAVAN S, KAMAL K, et al. Pavement crack detection using the Gabor filter[C]. 16th international IEEE conference on intelligent transportation systems(ITSC 2013), New York, America: IEEE, 2013
    [8] 章天杰, 韩海航. 基于残差神经网络的沥青路面裂缝识别分类研究[J]. 公路, 2021, 66(10): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202110004.htm

    ZHANG T J, HAN H H. Research on identification and classification of asphalt pavement cracks using residual neural network[J]. Highway, 2021, 66(10): 24-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202110004.htm
    [9] 沙爱民, 童峥, 高杰. 基于卷积神经网络的路表病害识别与测量[J]. 中国公路学报, 2018, 31(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201801002.htm

    SHA A M, TONG Z, GAO J. Recognition and measurement of pavement disasters based on convolutional neural networks[J]. China Journal of Highway and Transport, 2018, 31 (1): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201801002.htm
    [10] 孙朝云, 裴莉莉, 李伟, 等. 基于改进Faster R-CNN的路面灌封裂缝检测方法[J]. 华南理工大学学报(自然科学版), 2020, 48(2): 84-93.

    SUN Z Y, PEI L L, LI W, et al. Pavement potting crack detection method based on improved Faster R-CNN[J]. Journal of South China University of Technology(Natural Science Edition), 2020, 48(2): 84-93. (in Chinese)
    [11] 晏班夫, 徐观亚, 栾健, 等. 基于Faster R-CNN与形态法的路面病害识别[J]. 中国公路学报, 2021, 34(9): 181-193. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202109016.htm

    YAN B F, XU G Y, LUAN J, et al. Pavmenet distress detection based on Faster R-CNN and morphological operations[J]. China Journal of Highway and Transport, 2021, 34 (9): 181-193. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202109016.htm
    [12] RONNEBERGER O, FISCHER P, BROX T, et al. U-Net: Convolutional networks for biomedical image segmentation[C]. Medical Image Computing and Computer Assisted Intervention, Berlin, Germany: Springer, 2015.
    [13] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J/OL](2015-4-10)[2023-2-27]. https://doi.org/10.48550/arXiv.1409.1556.
    [14] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[J]. IEEE Transcations on Pattern Analysis and Machine Intelligence. 2017, 42(8): 7132-7141.
    [15] 杨炜, 黄立红, 赵祥模, 等. 基于FRRN注意力监督的沥青路面积水区域分割[J]. 交通运输工程学报, 2021, 21(5): 309-322. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202105029.htm

    YANG W, HUANG L H, ZHAO X M, et al. Puddle area segmentation of asphalt pavements based on FRRN attention and supervision[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 309-322. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202105029.htm
    [16] 林禹, 赵泉华, 李玉. 1种基于深度传递迁移学习的遥感影像分类方法[J]. 地球信息科学学报, 2022, 24(3): 495-507.

    LIN Y, ZHAO Q H, LI Y. A remote sensing image classification method based on deep transitive transfer learning[J]. Journal of Geo-information Science, 2022, 24(3): 495-507. (in Chinese)
    [17] YANG F, ZHANG L, YU S, et al. Feature pyramid and hierarchical boosting network for pavement crack detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(4): 1525-1535.
    [18] WANG X, ZHANG R, KONG T, et al. SOLOv2: Dynamic and fast instance segmentation[J]. Advances in Neural Information Processing Systems, 2020(33): 17721-17732.
    [19] HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]. The IEEE International Conference on Computer Vision, Venice, Italy: ICCV, 2017.
    [20] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]. The European Conference on Computer Vision, Munich, Germany: ECCV, 2018.
    [21] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.
    [22] 张继凯, 赵君, 张然, 等. 深度学习的图像实例分割方法综述[J]. 小型微型计算机系统, 2021, 42(1): 161-171.

    ZHANG J K, ZHAO J, ZHANG R, et al. Survey of image instance segmentation methods using deep learning[J]. Journal of Chinese Computer Systems, 2021, 42(1): 161-171. (in Chinese)
    [23] 吴忧, 袁雪. 基于改进SOLOv2的复杂场景下智能机器人巡检识别算法[J]. 北京交通大学学报, 2022, 46(5): 95-106.

    WU Y, YUAN X. Inspection and identification algorithm based on improved SOLOv2 of intelligent robot in complex environment[J]. Journal of Beijing Jiaotong University, 2022, 46(5): 95-106. (in Chinese)
    [24] 邱实, 陈斌, 胡文博, 等. 基于深度学习和虚拟模型的路面全域伤损状态自动化感知[J/OL]. 中国公路学报: (2022-11)[2023-02-25]. http://kns.cnki.net/kcms/detail/61.1313.U.20221124.0917.004.html.

    QIU S, CHEN B, HU W B, et al. Automated pavement-wide injury state sensing based on deep learning and virtual models[J/OL]. China Journal of Highway and Transport, (2022-11)[2023-02-25]. http://kns.cnki.net/kcms/detail/61.1313.U.20221124.0917.004.html. (in Chinese)
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  803
  • HTML全文浏览量:  297
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-06
  • 网络出版日期:  2023-05-13

目录

    /

    返回文章
    返回