留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于车辆位置与速度特征的驾驶行为模式分类方法

张苇冲 杨涛 吕能超

张苇冲, 杨涛, 吕能超. 基于车辆位置与速度特征的驾驶行为模式分类方法[J]. 交通信息与安全, 2023, 41(1): 85-94. doi: 10.3963/j.jssn.1674-4861.2023.01.009
引用本文: 张苇冲, 杨涛, 吕能超. 基于车辆位置与速度特征的驾驶行为模式分类方法[J]. 交通信息与安全, 2023, 41(1): 85-94. doi: 10.3963/j.jssn.1674-4861.2023.01.009
ZHANG Weichong, YANG Tao, LYU Nengchao. A Method for Classifying Driving Behavior Based on Vehicle Position and Speed[J]. Journal of Transport Information and Safety, 2023, 41(1): 85-94. doi: 10.3963/j.jssn.1674-4861.2023.01.009
Citation: ZHANG Weichong, YANG Tao, LYU Nengchao. A Method for Classifying Driving Behavior Based on Vehicle Position and Speed[J]. Journal of Transport Information and Safety, 2023, 41(1): 85-94. doi: 10.3963/j.jssn.1674-4861.2023.01.009

基于车辆位置与速度特征的驾驶行为模式分类方法

doi: 10.3963/j.jssn.1674-4861.2023.01.009
基金项目: 

国家自然科学基金项目 52072290

湖北省杰青项目 2020CFA081

详细信息
    作者简介:

    张苇冲(1998—),硕士研究生.研究方向:交通信息与安全. E-mail: zhangweichong@whut.edu.cn

    通讯作者:

    吕能超(1982—),博士,研究员. 研究方向:道路交通安全评价. E-mail: lnc@whut.edu.cn

  • 中图分类号: U492.8+4

A Method for Classifying Driving Behavior Based on Vehicle Position and Speed

  • 摘要: 精细车辆轨迹中包含连续的时间戳、位置,以及速度等信息。通过对车辆轨迹数据进行量化表达与挖掘分析,可以实现对车辆行为模式的分类。现有研究大多关注对位置的聚类,很少对车速、加速度等特征进行研究分析,而车速等是反映驾驶行为模式的重要特征。为了将轨迹多维信息纳入分析框架,研究了基于位置与速度特征的车辆轨迹行为模式分类方法。为克服现有行为模式分类方法的维度单一性,运用豪斯多夫轨迹距离算法计算出位置和速度特征的综合距离矩阵,针对豪斯多夫距离算法鲁棒性差的缺点,采用单向豪斯多夫距离90%分位值对算法进行了改进,降低噪声影响。同时,引入了车辆位置和速度来进一步提高分类的准确性,运用多次分层聚类算法依次对位置与速度轨迹图进行分类,得到车辆位置和速度上的行为模式。以HighD数据集为样本,提取了三车道上的行车轨迹,验证了基于速度与位置特征的车辆行为模式分类方法。结果表明:①本方法可以得到位置和速度的综合行为模式,聚类平均准确率达到94.8%,优于DBTCAN准确率89.3%和t-Cluster准确率86.4%;②基于换道模式轨迹偏移率曲线的分析,得到了4种互异的典型车辆换道模式。该方法可利用多维轨迹数据对行车模式进行分类及行为辨识,在车辆轨迹分类与不良行为辨识方面具有应用潜力。

     

  • 图  1  聚合层次算法流程图

    Figure  1.  Aggregation hierarchy Algorithm

    图  2  轨迹聚类分析流程图

    Figure  2.  Flow chart of trajectory clustering analysis

    图  3  highD数据集道路图

    Figure  3.  Highd Dataset Road Map

    图  4  车辆轨迹分布示意图

    Figure  4.  Schematic diagram of vehicle track distribution

    图  5  轨迹距离矩阵示意图

    Figure  5.  Trajectory Distance Matrix

    图  6  轨迹相似性度量层次聚类树状图

    Figure  6.  Hierarchical clustering tree for trajectory similarity measurement

    图  7  轮廓系数随聚类数目的变化

    Figure  7.  Variation of contour coefficient with the number of cluster

    图  8  空间轨迹聚类图

    Figure  8.  Spatial Trajectory Clustering Diagram

    图  9  不同换道模式下的轨迹偏移率

    Figure  9.  Track Deviation Rate Under Different Changing Modes

    图  10  不同换道模式下的轨迹偏移率

    Figure  10.  Track Deviation Rate Under Different Changing Modes

    图  11  位置轨迹模式第1类的速度模式聚类结果

    Figure  11.  Speed pattern clustering of the first type of position trajectory pattern

    表  1  空间轨迹的聚类结果

    Table  1.   Clustering results of spatial trajectories

    轨迹类别 轨迹总条数 正确分类条数 正确率/%
    第一类 136 124 91.2
    第二类 61 59 96.7
    第三类 33 32 96.9
    第四类 202 202 100
    第五类 259 238 91.9
    总数 691 655
    平均正确率/% 94.8
    下载: 导出CSV

    表  2  各算法的聚类结果

    Table  2.   Clustering Results of Each Algorithm

    方法名称 分类数 轨迹总条数 正确分类条数 正确率/%
    本文算法 5 691 655 94.8
    DBTCAN 5 691 617 89.3
    t-Cluster 3 691 597 86.4
    下载: 导出CSV
  • [1] ZHAO T, XU Y, MONFORT M, et al. Multi-agent tensor fusion for contextual trajectory prediction[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, New York: IEEE, 2019.
    [2] 陆德彪, 郭子明, 蔡伯根, 等. 基于深度数据的车辆目标检测与跟踪方法[J]. 交通运输系统工程与信息, 2018, 18(3): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201803009.htm

    LU D B, GUO Z M, CAI B G, et al. A vehicle detection and tracking method based on range data[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(3): 55-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201803009.htm
    [3] 杨红红, 曲仕茹. 基于压缩感知尺度自适应的多示例交通目标跟踪算法[J]. 中国公路学报, 2018, 31(6): 281-290, 316. doi: 10.3969/j.issn.1001-7372.2018.06.015

    YANG H H, QU S R. Traffic target tracking algorithm based on scale adaptive multiple instance learning with compressive sensing[J]. China Journal of Highway and Transport, 2018, 31(6): 281-290, 316. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.06.015
    [4] 冯汝怡, 李志斌, 吴启范, 等. 航拍视频车辆检测目标关联与时空轨迹匹配[J]. 交通信息与安全, 2021, 39(2): 61-69, 77. doi: 10.3963/j.jssn.1674-4861.2021.02.008

    FENG R Y, LI Z B, WU Q F, et al. Association of vehicle object detection and the time-space trajectory matching from aerial videos[J]. Journal of Transport Information and Safety, 2021, 39(2): 61-69, 77. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.02.008
    [5] CHOI S, KIM J, YEO H. Trajgail: generating urban vehicle trajectories using generative adversarial imitation learning[J]. Transportation Research Part C: Emerging Technologies, 2021(128): 91-113.
    [6] LI X C, ZHAO K Q, C G, et al. Deep representation learning for trajectory similarity computation[C]. 34th International Conference on Data Engineering (ICDE), Paris, France: IEEE, 2018.
    [7] 马文耀, 吴兆麟, 杨家轩, 等. 基于单向距离的谱聚类船舶运动模式辨识[J]. 重庆交通大学学报(自然科学版), 2015, 34 (5): 130-134. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201505026.htm

    MA W Y, WU Z L, YANG J X, et al. Vessel motion pattern recognition based on one-way distance spectral clustering algorithm[J]. Journal of Chongqing Jiaotong University(Natural Science), 2015, 34(5): 130-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201505026.htm
    [8] 王培, 江南, 万幼, 等. 应用Hausdorff距离的时空轨迹相似性度量方法[J]. 计算机辅助设计与图形学学报, 2019, 31 (4): 647-658. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201904016.htm

    WANG P, JIANG N, WAN Y, et al. Measuring similarity of spatio-temporal trajectory using hausdorff distance[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(4): 647-658. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201904016.htm
    [9] CHOONG M Y, ANGELINE L, CHIN R K Y, et al. Modeling of vehicle trajectory clustering based on LCSS for traffic pattern extraction[C]. 2nd International Conference on Automatic Control and Intelligent Systems, Kota Kinabalu, Malaysia: IEEE, 2017.
    [10] 李颖, 赵莉, 赵祥模, 等. 基于大货车GPS数据的轨迹相似性度量有效性研究[J]. 中国公路学报, 2020, 33(2): 146-157. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202002014.htm

    LI Y, ZHAO L, ZHAO X M, et al. Effectiveness of trajectory similarity measures based on truck GPS data[J]. China Journal of Highway and Transport, 2020, 33(2): 146-157. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202002014.htm
    [11] ANDRE S F, DESPINA K, LUIS O A, et al. Multidimensional similarity measuring for semantic trajectories[J]. Transactions in Gis, 2016, 20(2): 280-298. doi: 10.1111/tgis.12156
    [12] FHWA, Department of Transportation, America. NGSIM: Next generation simulation[EB/OL]. (2007-5-5)[2023-02-15]. http://www.ngsim-com-munity.org/.
    [13] KRAJEWSKI R, BOCK J, KLOEKER L, et al. The highD dataset: A drone dataset of naturalistic vehicle trajectories on german highways for validation of highly automated driving systems[C]. 21st International Conference on Intelligent Transportation Systems(ITSC), Hawaii: IEEE, 2018.
    [14] WANG J H, FU T, XUE J T, et al. Realtime wide-area vehicle trajectory tracking using millimeter-wave radar sensors and the open TJRD TS dataset, [EB/OL]. (2021)[2023-02-15]. https://www.tjrdts.com.
    [15] 潘晓, 马昂, 郭景峰, 等. 基于时间序列的轨迹数据相似性度量方法研究及应用综述[J]. 燕山大学学报, 2019, 43 (6): 531-545.

    PAN X, MA A, GUO J F, et al. A survey of research and application of track data similarity measurement based on time series[J]. Journal of Yanshan University, 2019, 43(6): 531-545. (in Chinese)
    [16] 丁华, 杨文杰, 姜超. 考虑轨迹分析的车辆异常行为辨识[J]. 重庆理工大学学报(自然科学版), 2022, 36(7): 62-69.

    DING H, YANG W J, JIANG C. Vehicle abnormal behavior identification considering trajectory analysis[J]. Journal of Chongqing University of Technology(Natural Science), 2022, 36(7): 63-69. (in Chinese)
    [17] LI H P. Typical trajectory extraction method for ships based on AIS data and trajectory clustering[C]. 2nd International Conference on Artificial Intelligence and Information Systems, chongqing: ACM, 2021.
    [18] 杨家轩, 刘元. 基于DBTCAN算法的船舶轨迹聚类与航路识别[J]. 上海海事大学学报, 2022, 43(3): 7-12.

    YANG J X, LIU Y. Ship trajectory clustering and route recognition based on DBTCAN algorithm[J]. Journal of Shanghai Maritime University, 2022, 43(3): 7-12. (in Chinese)
    [19] 姜乔文, 刘瑜, 潭大宁, 等. 时空轨迹多维特征融合的行为规律挖掘算法[J/OL]. (2021-11-23)[2023-02-15]. https://kns.cnki.net/kcms/detail/11.1929.v.20211123.1336.014.html

    JIANG Q W, LIU Y, TAN D N, et al. Behavior rule mining algorithm based on multi-dimensional feature fusion of spatio-temporal trajectory[J/OL]. (2021-11-23)[2023-02-15]. https://kns.cnki.net/kcms/detail/11.1929. v. 20211123.1336.014. html. (in Chinese)
    [20] ARIF A S, DEBI P D, SAMARJIT K, et al. Video trajectory analysis using unsupervised clustering and multi-criteria ranking[J]. Soft Computing, 2020, 24(21): 16643-16654.
    [21] ZHAO P X, LIU X T, SHEN J W, et al. A network distance and graph-partitioning-based clustering method for improving the accuracy of urban hotspot detection[J]. Geocarto International, 2019, 34(3): 293-315.
    [22] SHI Y, WANG D, TANG J B, et al. Detecting spatiotemporal extents of traffic congestion: A density-based moving object clustering approach[J]. International Journal of Geographical Information Science, 2021, 35(7): 1449-1473.
    [23] YUE H Q, GUAN Q F, PAN Y T, et al. Detecting clusters over intercity transportation networks using k-shortest paths and hierarchical clustering: a case study of mainland china[J]. International Journal of Geographical Information Science, 2019, 33(5): 1082-1105.
    [24] 赵怀鑫, 邓然然, 张英杰, 等. 1种用于高速公路通行情况分析的收费数据挖掘方法[J]. 中国公路学报, 2018, 31(8): 155-164.

    ZHAO H X, DENG R R, ZHANG Y J, et al. Method of mining fee data for expressway traffic analysis[J]. China Journal of Highway and Transport, 2018, 31(8): 155-164. (in Chinese)
    [25] RODRIGUEZ M, COMIN C, CASANOVA D, et al. Clustering algorithms: a comparative approach[J]. PLoS ONE, 2019, 14(1): 107-141.
    [26] 王灵丽, 黄敏, 高亮. 基于聚类算法的交通网络节点重要性评价方法研究[J]. 交通信息与安全, 2020, 38(2): 80-88. doi: 10.3963/j.jssn.1674-4861.2020.02.010

    WANG L L, HUANG M, GAO L. Methods of importance evaluation of traffic network node based on clustering algorithms[J]. Journal of Transport Information and Safety, 2020, 38(2): 80-88. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2020.02.010
    [27] YANG J X, LIU Y, MA L Q, et al. Maritime traffic flow clustering analysis by density based trajectory clustering with noise[J]. Ocean Engineering, 2022(249): 111001.
    [28] JIANG R Q, CHEN L L. Driving stress estimation in physiological signals based on hierarchical clustering and multi-view intact space learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 13141-13154.
    [29] 徐进, 陈莹, 陈海源, 等. 回头曲线路段的轨迹行为模式与事故风险[J]. 东南大学学报(自然科学版), 2020, 50(5): 973-982. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202005025.htm

    XU J, CHEN Y, CHEN H Y, et al. Vehicle track patterns and accident risk on hairpin curves[J]. Journal of Southeast University(Natural Science Edition), 2020, 50(5): 973-982. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202005025.htm
    [30] PU Z Y, CUI Z Y, TANG J J, et al. Multimodal traffic speed monitoring: A real-time system based on passive wi-fi and bluetooth sensing technology[J]. IEEE Internet of Things Journal, 2022, 9(14): 12413-12424.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  813
  • HTML全文浏览量:  371
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-28
  • 网络出版日期:  2023-05-13

目录

    /

    返回文章
    返回