留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向常发性拥堵的城市局部路网韧性评价与分析

陈思妤 李洁 胡演诚 姜宇

陈思妤, 李洁, 胡演诚, 姜宇. 面向常发性拥堵的城市局部路网韧性评价与分析[J]. 交通信息与安全, 2022, 40(4): 138-147. doi: 10.3963/j.jssn.1674-4861.2022.04.015
引用本文: 陈思妤, 李洁, 胡演诚, 姜宇. 面向常发性拥堵的城市局部路网韧性评价与分析[J]. 交通信息与安全, 2022, 40(4): 138-147. doi: 10.3963/j.jssn.1674-4861.2022.04.015
CHEN Siyu, LI Jie, HU Yancheng, JIANG Yu. An Evaluation and Analysis on the Resilience of the Urban Local Road Network for Recurrent Congestions[J]. Journal of Transport Information and Safety, 2022, 40(4): 138-147. doi: 10.3963/j.jssn.1674-4861.2022.04.015
Citation: CHEN Siyu, LI Jie, HU Yancheng, JIANG Yu. An Evaluation and Analysis on the Resilience of the Urban Local Road Network for Recurrent Congestions[J]. Journal of Transport Information and Safety, 2022, 40(4): 138-147. doi: 10.3963/j.jssn.1674-4861.2022.04.015

面向常发性拥堵的城市局部路网韧性评价与分析

doi: 10.3963/j.jssn.1674-4861.2022.04.015
基金项目: 

国家自然科学基金项目 51878264

河南省交通厅科技项目 2020G11

详细信息
    作者简介:

    陈思妤(1997—),硕士研究生. 研究方向:复杂交通系统建模与优化. E-mail:chens1@hnu.edu.cn

    通讯作者:

    李洁(1972—),博士,副教授. 研究方向:交通流理论、交通安全、驾驶行为等. E-mail:lijie_civil@hnu.edu.cn

  • 中图分类号: U491

An Evaluation and Analysis on the Resilience of the Urban Local Road Network for Recurrent Congestions

  • 摘要: 为了缓解常发性拥堵引发的城市噪音、能源消耗和废气排放等现状,使路网具备抵抗短时激增车流的能力,将宏观基本图与性能时序图相结合对局部路网韧性进行量化。针对韧性属性,提出了鲁棒性指数、损失面积比、恢复快速性、流量峰值差和临界密度差5个评价指标,反映路网在性能下降、稳定和恢复阶段的韧性特性。引入Kendall法检验各赋权法的一致性,并基于CRITIC的多属性决策获得最优权重,提出了组合赋权和模糊逻辑相结合的城市局部路网韧性综合评价方法,结合李克特量表法对综合韧性得分进行分级。以长沙市局部路网为例,设计韧性改善方案,针对常发性拥堵路段上的交叉口进行信号配时优化;通过VISSIM仿真并计算得到各方案的韧性指标。研究结果显示:方案8,10和16能有效吸收短时激增车流并与路网状态相适应,所有方案中方案14的韧性得分最高。局部路网综合韧性得分具有随着优化路段数的增加而增长的趋势,但并不是线性递增。信号配时优化改变了路网韧性属性,并降低了部分路段对城市局部路网韧性的负面影响。不同评价方法下的韧性得分排名存在部分差异,流量峰值差与脆弱性指数的评价排名更接近,损失面积比与韧性损失值的评价排名更接近。所提出的指标不局限于单一韧性属性,能更全面、客观地反映干扰下路网的响应过程。

     

  • 图  1  宏观基本图

    Figure  1.  Macroscopic fundamental diagram

    图  2  系统性能时序图

    Figure  2.  Performance profile of the system

    图  3  研究区域

    Figure  3.  Area for case study

    图  4  信号配时优化前后交通状况对比

    Figure  4.  Comparison of the traffic conditions before and after signal timing improvement

    表  1  城市局部路网韧性评价指标

    Table  1.   Indexes to evaluate urban local road network resilience

    来源 响应指标 指标属性
    时序图 鲁棒性指数RI 逆向
    恢复快速性RR 正向
    损失面积比RLA 逆向
    宏观基本图 流量峰值差DPF 正向
    临界密度差DCD 正向
    下载: 导出CSV

    表  2  韧性等级及取值范围

    Table  2.   Resilence levels and the value ranges

    韧性等级 取值范围
    极弱 r≤20
    20<r≤40
    中等 40<r≤60
    较强 60<r≤80
    下载: 导出CSV

    表  3  基于互联网地图速度数据反推交通流量(样本2021-04-20 T18: 51)

    Table  3.   Estimated traffic flows based on the speed data from the internet map (Sample 2021-04-20 T18: 51)

    路名 行车速度/ (km/h) 饱和度 机动车流/ (pcu/h) 密度/ (pcu/km)
    五一大道 10 0.88 2 603 260
    湘江中路 15 0.78 2 326 155
    黄兴中路 10 0.84 2 389 239
    芙蓉中路 15 0.78 2 326 155
    解放西路 25 0.60 1 011 40
    下载: 导出CSV

    表  4  指标权重及级别阈值

    Table  4.   Weights of indexes and their thresholds of grades

    等级 极弱
    (20%)

    (40%)

    (60%)
    较强
    (80%)
    权重
    RI(/km/h) 0.041 0.114 0.616 0.886 0.256
    RR(/km/h2 0.020 0.288 0.366 0.405 0.224
    RLA 0.113 0.254 0.512 0.826 0.226
    DPF/[pcu/(h·ln)] 0.206 0.271 0.520 0.834 0.138
    DCD /[pcu/(km·ln)] 0.209 0.335 0.560 0.631 0.156
    下载: 导出CSV

    表  5  不同排列组合方案下路网的韧性指标

    Table  5.   Indexes of the road network resilience with different permutations and combination schemes

    编号 优化路段ID RR(/km/h2 RI(/km/h) RLA DPF/ [pcu/(h·ln)] DCD/ [pcu/(km·ln)]
    1 未优化 8.650 7.154 0.154 0.000 0.000
    2 492 10.184 6.341 0.185 2.626 1.004
    3 -509 10.644 7.060 0.213 26.351 -0.455
    4 683 6.024 6.546 0.201 -6.657 0.371
    5 -568 21.886 2.119 0.085 2.287 -0.948
    6 492、-509 8.582 6.861 0.189 26.513 0.435
    7 492、683 8.015 6.386 0.159 1.536 0.538
    8 492、-568 < 0.001 < 0.001 < 0.001 8.180 -0.084
    9 -568、-509 6.313 2.744 0.104 11.789 -0.281
    10 -568、683 < 0.001 < 0.001 < 0.001 4.121 0.561
    11 -509、683 6.750 5.507 0.177 14.032 -0.158
    12 683、-568、-509 0.443 0.816 0.037 33.112 -0.165
    13 492、-509、683 7.573 6.878 0.198 30.041 1.407
    14 492、-568、683 6.064 1.098 0.076 26.513 0.435
    15 492、-509、-568 8.864 3.309 0.113 19.949 -0.514
    16 492、-568、683、-509 < 0.001 < 0.001 < 0.001 -1.397 -0.627
    下载: 导出CSV

    表  6  路网综合韧性评分与等级划分

    Table  6.   Comprehensive resilience scores and classifications of the road network resilience

    编号 优化路段ID b1 b2 b3 b4 综合韧性 等级
    1 未优化 0.394 0.315 0.124 0.168 51 中韧性
    2 492 0.276 0.344 0.000 0.380 60 中韧性
    3 -509 0.638 0.000 0.002 0.360 52 中韧性
    4 683 0.476 0.368 0.156 0.000 44 中韧性
    5 -568 0.254 0.040 0.335 0.371 66 较强韧性
    6 492,-509 0.482 0.000 0.171 0.347 58 中韧性
    7 492,683 0.160 0.460 0.224 0.156 58 中韧性
    8 492,-568 0.224 0.215 0.078 0.482 66 较强韧性
    9 -568,-509 0.065 0.347 0.589 0.000 60 较强韧性
    10 -568,683 0.224 0.138 0.000 0.638 71 较强韧性
    11 -509,683 0.136 0.610 0.255 0.000 52 中韧性
    12 683,-568,-509 0.228 0.152 0.000 0.620 70 较强韧性
    13 492,-509,683 0.482 0.058 0.166 0.294 55 中韧性
    14 492,-568,683 0.010 0.215 0.265 0.511 76 较强韧性
    15 492,-509,-568 0.156 0.077 0.477 0.290 68 较强韧性
    16 492,-568,683,-509 0.518 0.000 0.000 0.482 59 中韧性
    下载: 导出CSV
  • [1] 李亚, 翟国方, 顾福妹. 城市基础设施韧性的定量评估方法研究综述[J]. 城市发展研究, 2016, 23(6): 113-122. doi: 10.3969/j.issn.1006-3862.2016.06.016

    LI Y, ZHAI G F, GU F M. Review on methods of quantification of urban infrastructure resilience[J]. Urban Development Studies, 2016, 23(6): 113-122. (in Chinese) doi: 10.3969/j.issn.1006-3862.2016.06.016
    [2] GONCALVES L A P J, RIBEIRO P J G. Resilience of urban transportation systems. Concept, characteristics, and methods[J]. Journal of Transport Geography, 2020(85): 102727.
    [3] MURRAY-TUITE P M. A comparison of transportation network resilience under simulated system optimum and user equilibrium conditions[C]. 2006 Winter Simulation Conference, Monterey, CA, USA: IEEE, 2006.
    [4] FRECKLETON D, HEASLIP K, LOUISELL W, et al. Evaluation of resiliency of transportation networks after disasters[J]. Transportation Research Record: Journal of the Transportation Research Board, 2012, 2284(1): 109-116. doi: 10.3141/2284-13
    [5] LASKAR J I, SEN M K, DUTTA S, et al. A flood resilience analytics framework for housing infrastructure systems based on dempster-shafer(evidence)theory[J]. Journal of Performance of Constructed Facilities, 2021, 35(6): 04021073. doi: 10.1061/(ASCE)CF.1943-5509.0001615
    [6] AYDIN N Y, DUZGUN H S, WENZEL F, et al. Integration of stress testing with graph theory to assess the resilience of urban road networks under seismic hazards[J]. Natural Hazards, 2018, 91(1): 37-68. doi: 10.1007/s11069-017-3112-z
    [7] ZHU Y, XIE K, OZBAY K, et al. Data-driven spatial modeling for quantifying networkwide resilience in the aftermath of hurricanes irene and sandy[J]. Transportation Research Record, 2017, 2604(1): 9-18. doi: 10.3141/2604-02
    [8] BALAL E, VALDEZ G, MIRAMONTES J, et al. Comparative evaluation of measures for urban highway network resilience due to traffic incidents[J]. International Journal of Transportation Science and Technology, 2019, 8(3): 304-317. doi: 10.1016/j.ijtst.2019.05.001
    [9] 顾金刚, 付强, 胡建伟. 基于排队时间指数的信号控制路口交通拥堵评价方法[J]. 交通信息与安全, 2020, 38(6): 80-86. doi: 10.3963/j.jssn.1674-4861.2020.06.011

    GU J G, FU Q, HU J W. Traffic congestion status evaluation for signal-controlled intersection based on queuing time index[J]. Journal of Transport Information and Safety, 2020, 38 (6): 80-86. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2020.06.011
    [10] TANG J Q, HEINIMANN H R. A resilience-oriented approach for quantitatively assessing recurrent spatial-temporal congestion on urban roads[J]. Plos One, 2018, 13(1): 1-22.
    [11] 吕彪, 高自强, 管心怡, 等. 基于日变交通配流的城市道路网络韧性评估[J]. 西南交通大学学报, 2020, 55(6): 1181-1190. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202006007.htm

    LYU B, GAO Z Q, GUAN X Y, et al. Resilience assessment of urban road network based on day-to-day traffic assignment[J]. Journal of Southwest Jiaotong University, 2020, 55 (6): 1181-1190. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202006007.htm
    [12] AMINI S, TILG G, BUSCH F, et al. Evaluating the impact of real-time traffic control measures on the resilience of urban road networks[C]. 21st International Conference on Intelligent Transportation Systems, Maui, Hawaii, USA: IEEE, 2018.
    [13] KIM S, YEO H. A flow-based vulnerability measure for the resilience of urban road network[J]. Procedia-Social and Behavioral Sciences, 2016(218): 13-23.
    [14] HOOGENDOORN S P, KNOOP V L, LINT H V, et al. Applications of the generalized macroscopic fundamental diagram[C]. Traffic and Granular Flow'13, Julich, Germany: Springer International Publishing, 2015.
    [15] TANG J Q, HEINIMANN H R, HAN K, et al. Evaluating resilience in urban transportation systems for sustainability: a systems-based bayesian network model[J]. Transportation Research Part C: Emerging Technologies, 2020(121): 102840.
    [16] 赵映璎, 马维珍, 温海燕. 隧道施工应急系统韧性评价[J]. 土木工程与管理学报, 2021, 38(3): 167-172. doi: 10.3969/j.issn.2095-0985.2021.03.027

    ZHAO Y Y, MA W Z, WEN H Y. Toughness evaluation of tunnel construction emergency system[J]. Journal of Civil Engineering and Management, 2021, 38(3): 167-172. (in Chinese) doi: 10.3969/j.issn.2095-0985.2021.03.027
    [17] 黄亚江, 李书全, 项思思. 基于AHP-PSO模糊组合赋权法的地铁火灾安全韧性评估[J]. 灾害学, 2021, 36(3): 15-20+40. doi: 10.3969/j.issn.1000-811X.2021.03.004

    HUANG Y J, LI S Q, XIANG S S. Evaluation of subway fire safety resilience based on AHP-PSO fuzzy combination weighting method[J]. Journal of Catastrophology, 2021, 36 (3): 15-20+40. (in Chinese) doi: 10.3969/j.issn.1000-811X.2021.03.004
    [18] BRUNEAU M, CHANG S E, EGUCHI R T, et al. A framework to quantitatively assess and enhance the seismic resilience of communities[J]. Earthquake Spectra, 2003, 19(4): 733-752. doi: 10.1193/1.1623497
    [19] SAFFARI E, YILDIRIMOGLU M, HICKMAN M. A methodology for identifying critical links and estimating macroscopic fundamental diagram in large-scale urban networks[J]. Transportation Research Part C: Emerging Technologies, 2020(119): 102743
    [20] 张玉, 魏华波. 基于CRITIC的多属性决策组合赋权方法[J]. 统计与决策, 2012, (16): 75-77. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJC201216025.htm

    ZHANG Y, WEI H B. Multiple attribute decision combination weighting method based on CRITIC[J]. Statistics & Decision, 2012, (16): 75-77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJJC201216025.htm
    [21] 黄晓丽, 刘耀龙, 段锦, 等. 基于灰色关联及模糊综合评价法的道路交通安全风险评价[J]. 数学的实践与认识, 2017, 47(7): 208-215. https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS201707027.htm

    HUANG X L, LIU Y L, DUAN J, et al. The assessment of road traffic safety risk based on grey relation and fuzzy comprehensive evaluation method[J]. Mathematics in Practice and Theory, 2017, 47(7): 208-215. https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS201707027.htm
    [22] LI Q. A novel Likert scale based on fuzzy sets theory[J]. Expert Systems with Applications, 2013, 40(5): 1609-1618. doi: 10.1016/j.eswa.2012.09.015
    [23] 王璨, 冯炜. 城市道路路段通行能力计算方法探讨[J]. 华东公路, 2016, (1): 109-111. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201506017.htm

    WANG C, FEN W. Discussion on calculation method of capacity of urban road section[J]. East China Highway, 2016, (1): 109-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201506017.htm
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  1160
  • HTML全文浏览量:  431
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-16
  • 网络出版日期:  2022-09-17

目录

    /

    返回文章
    返回