留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于动态清空距离的特殊车辆与CAVs混合车道控制

赵欣 庞明宝

赵欣, 庞明宝. 基于动态清空距离的特殊车辆与CAVs混合车道控制[J]. 交通信息与安全, 2022, 40(3): 118-126. doi: 10.3963/j.jssn.1674-4861.2022.03.012
引用本文: 赵欣, 庞明宝. 基于动态清空距离的特殊车辆与CAVs混合车道控制[J]. 交通信息与安全, 2022, 40(3): 118-126. doi: 10.3963/j.jssn.1674-4861.2022.03.012
ZHAO Xin, PANG Mingbao. A Control method of Dedicated Lanes for Mixed Use of Special Vehicles and CAVs Based on Dynamic Clear Distance[J]. Journal of Transport Information and Safety, 2022, 40(3): 118-126. doi: 10.3963/j.jssn.1674-4861.2022.03.012
Citation: ZHAO Xin, PANG Mingbao. A Control method of Dedicated Lanes for Mixed Use of Special Vehicles and CAVs Based on Dynamic Clear Distance[J]. Journal of Transport Information and Safety, 2022, 40(3): 118-126. doi: 10.3963/j.jssn.1674-4861.2022.03.012

基于动态清空距离的特殊车辆与CAVs混合车道控制

doi: 10.3963/j.jssn.1674-4861.2022.03.012
基金项目: 

国家自然科学基金项目 50478088

河北省自然科学基金项目 E2022202023

河北省高等学校科学技术研究项目 ZD2021028

详细信息
    作者简介:

    赵欣(1996—),硕士研究生. 研究方向:交通运输规划与管理. E-mail:zhaoxincsc@163.com

    通讯作者:

    庞明宝(1966—),博士,教授. 研究方向:交通管理与控制、智能交通运输系统、交通安全等. E-mail:pmbpgy@sina.com

  • 中图分类号: U491

A Control method of Dedicated Lanes for Mixed Use of Special Vehicles and CAVs Based on Dynamic Clear Distance

  • 摘要: 特殊车辆的优先通行是道路交通管理的一项重要工作,而目前相关控制措施存在实施难度较大、道路空间利用率低和道路通行能力下降等问题。为解决这些问题,结合智能网联汽车(CAVs)技术特点,提出考虑特殊车辆优先通行的CAVs专用车道控制方法,按应急车辆、一般优先级车辆和CAVs的优先通行顺序设计车辆通行规则。通过预测特殊车辆到达下游交叉口时的路口排队长度,建立“满足不同优先级特殊车辆通行需求”的动态清空距离模型,其中应急车辆以速度损失最小化为优化目标,一般优先级车辆以均衡车辆通行需求为优化目标。针对CAVs在专用道上可能成为其他车辆通行障碍的情况,考虑换道安全和不同换道动机,设计CAVs进入和离开专用道的规则,建立换道决策控制模型;在此基础上,提出适用于不同优先级车辆的专用车道通行控制策略。通过仿真实验对所提方法的控制效果予以分析验证。实验结果表明:与不考虑特殊车辆优先通行的控制方法相比,虽然该方法的车均出行时间和人均出行时间分别增加了3.9%和2.8%,但特殊车辆的车均延误时间减少了59.6%以上;与IBL控制方法相比,该方法的车均出行时间和人均出行时间分别减少16.7%和14.6%,特殊车辆的车均延误时间减少13.5%,专用车道利用率提高36.3%以上,并且在CAVs渗透率大于0.4时获得最佳控制效果。该控制方法在特殊车辆优先通行方面,减少了单一控制策略的局限性,为交通控制和管理提供理论支撑。

     

  • 图  1  动态清空距离示意图

    Figure  1.  Dynamic clear distance diagram

    图  2  特殊车辆到达交叉口状态

    Figure  2.  Arrival status of special vehicles at intersection

    图  3  混合车道动态控制流程图

    Figure  3.  Dynamic control flow chart of hybrid lane

    图  4  实验区域示意图

    Figure  4.  Schematic of the experimental area

    图  5  特殊车辆车均延误时间

    Figure  5.  Average vehicle delay time of special vehicles

    图  6  整体车均出行时间

    Figure  6.  Average vehicle travel time

    图  7  整体人均出行时间

    Figure  7.  Per capita travel time

    图  8  专用车道交通量

    Figure  8.  Traffic flow of the dedicated lane

    图  9  普通车道交通量

    Figure  9.  Traffic flow of the normal road lane

    图  10  道路整体车均延误时间

    Figure  10.  The average vehicle delay time

  • [1] WU J, KULCSÁR B, AHN S, et al. Emergency vehicle lane pre-clearing: From microscopic cooperation to routing decision making[J]. Transportation Research Part B: Methodological, 2020(141): 223-239.
    [2] 赵韩涛, 马国胜, 毛宏燕. 基于元胞自动机模型的应急车辆行程时间[J]. 长安大学学报(自然科学), 2015, 35(2): 132-137+144. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201502020.htm

    ZHAO H T, MA G S, MAO H Y. Emergency vehicle travel time based on cellular automaton model[J]. Journal of Chang'an University(Natural Science Edition), 2015, 35 (2): 132-137+144. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201502020.htm
    [3] 赵晨馨, 董红召, 郝伟娜. 公交时分复用车道设置条件及交通临界模型[J]. 浙江大学学报(工学版), 2021, 55(4): 704-712. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202104012.htm

    ZHAO C X, DONG H Z, HAO W N. Setting condition and traffic critical model of bus lane with time-division multiplexing[J]. Journal of Zhejiang University(Engineering Science), 2021, 55(4): 704-712. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202104012.htm
    [4] BASSO L J, GUEVANA C A, GSCHWENDER A, et al. Congestion pricing, transit subsidies and dedicated bus lanes: Efficient and practical solutions to congestion[J]. Transport Policy, 2011, 18(5): 676-684. doi: 10.1016/j.tranpol.2011.01.002
    [5] TOY C, LEUNG K, ALVAREZ L, et al. Emergency vehicle maneuvers and control laws for automated highway systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2002, 3(2): 109-119. doi: 10.1109/TITS.2002.801422
    [6] 杨阳, 刘强, 石英杰. 高速公路饱和路段动态应急车道开放决策模型研究[J/OL]. (2021-04-12)[2022-04-16]. http://kns.cnki.net/kcms/detail/43.1481.U.20210409.1620.008.html.

    YANG Y, LIU Q, SHI Y J. Study on decision model of dynamic hard shoulder running for highways with saturated traffic volume[J/OL]. (2021-04-12)[2022-04-16]. http://kns.cnki.net/kcms/detail/43.1481.U.20210409.1620.008.html. (in Chinese)
    [7] HUANG D, XING J, LIU Z, et al. A multi-stage stochastic optimization approach to the stop-skipping and bus lane reservation schemes[J]. Transportmetrica A: Transport Science, 2021, 17(4): 1272-1304. doi: 10.1080/23249935.2020.1858206
    [8] OSMAN R A, ZAKI A I, ABDELSALAM A K. Novel road traffic management strategy for rapid clarification of the emergency vehicle route based on V2V communications[J]. Sensors, 2021, 21(15): 5120. doi: 10.3390/s21155120
    [9] GHIASI A, HUSSAIN O, QIAN Z S, et al. A mixed traffic capacity analysis and lane management model for connected automated vehicles: A Markov chain method[J]. Transportation Research Part B: Methodological, 2017(106): 266-292.
    [10] XIE Z, JIN H, TENG J, et al. Design and management of multi-functional exclusive lane for the integrated service to various vehicles with priority[J]. KSCE Journal of Civil Engineering, 2022, 26(2): 882-892. doi: 10.1007/s12205-021-5786-8
    [11] LITMAN T. Autonomous vehicle implementation predictions[M]. Victoria, Canada: Victoria Transport Policy Institute, 2017.
    [12] 庞明宝, 柴紫欣, 巩丹阳. 混合交通下智能网联车借道公交专用车道控制[J]. 交通运输系统工程与信息, 2021, 21(4): 118-124. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202104014.htm

    PANG M B, CHAI Z X, GONG D Y. Control of connected and automated vehicles driving on dedicated bus lane under mixed traffic[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(4): 118-124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202104014.htm
    [13] 赵鑫. 基于元胞自动机的联网车辆专用车道设置研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    ZHAO X. Research on dedicated lane setting of internet of vehicles based on cellular automata[D]. Harbin: Harbin Institute of Technology, 2020. (in Chinese)
    [14] WINSOR M. Influence of networked and cooperative vehicles on virtual right-of-way performance in mixed traffic[D]. Munich: Technical University of Munich, 2020.
    [15] XIAO L, WANG M, AREM B. Traffic flow impacts of converting an HOV lane into a dedicated CACC lane on a freeway corridor[J]. IEEE Intelligent Transportation Systems Magazine, 2019, 12(1): 60-73.
    [16] 刘悠冉. 自动驾驶汽车借道BRT车道行驶的干线协调效率研究[D]. 北京: 清华大学, 2019.

    LIU Y R. Research on the coordination control efficiency of autonomous vehicles driving on the BRT Lanes[D]. Beijing: Tsinghua University, 2019. (in Chinese)
    [17] LEVIN M W, KHANI A. Dynamic transit lanes for connected and autonomous vehicles[J]. Public Transport, 2018, 10 (3): 399-426. doi: 10.1007/s12469-018-0186-2
    [18] WU D, DENG W, SONG Y, et al. Evaluating operational effects of bus lane with intermittent priority under connected vehicle environments[J]. Discrete Dynamics in Nature and Society, 2017, 2017: 1659176.
    [19] ZYRYANOV V, MIRONCHUK A. Simulation study of intermittent bus lane and bus signal priority strategy[J]. Procedia-Social and Behavioral Sciences, 2012(48): 1464-1471.
    [20] WU W, HEAD L, YAN S, et al. Development and evaluation of bus lanes with intermittent and dynamic priority in connected vehicle environment[J]. Journal of Intelligent Transportation Systems, 2018, 22(4): 301-310. doi: 10.1080/15472450.2017.1313704
    [21] MA C, XU X D. Providing spatial-temporal priority control strategy for BRT lanes: A simulation approach[J]. Journal of Transportation Engineering Part A: Systems, 2020, 146(7): 04020060. doi: 10.1061/JTEPBS.0000385
    [22] RAU A, TIAN L, JAIN M, et al. Dynamic autonomous road transit (DART) for use-case capacity more than bus[J]. Transportation Research Procedia, 2019(41): 812-823.
    [23] XIE M, RAMANATHAN S, RAU A, et al. Design and evaluation of V2X-based dynamic bus lanes[J]. IEEE Access, 2021 (9): 136094-136104.
    [24] 宋现敏, 张明业, 李振建, 等. 动态公交专用道的设置及其仿真分析评价[J]. 吉林大学学报(工学版), 2020, 50(5): 1677-1686. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202005016.htm

    SONG X M, ZHANG M Y, LI Z J, et al. Setting of dynamic bus lane and its simulation analysis and evaluation[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1677-1686. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202005016.htm
    [25] CHOWDHURY D, SANTEN L, SCHADSCHNEIDER A. Statistical physics of vehicular traffic and some related systems[J]. Physics Reports, 2000, 329(4-6): 199-329. doi: 10.1016/S0370-1573(99)00117-9
    [26] NIE J, ZHANG J, DING W, et al. Decentralized cooperative lane-changing decision-making for connected autonomous vehicles[J]. IEEE Access, 2016(4): 9413-9420.
    [27] WANG Z, ZHAO X, CHEN Z, et al. A dynamic cooperative lane-changing model for connected and autonomous vehicles with possible accelerations of a preceding vehicle[J]. Expert Systems with Applications, 2021(173): 114675.
  • 加载中
图(10)
计量
  • 文章访问数:  1352
  • HTML全文浏览量:  576
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-06
  • 网络出版日期:  2022-07-25

目录

    /

    返回文章
    返回