留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

网联环境下考虑非优先车辆延误的公交优先信号控制方法

谭百宏 邱志军 张祎 何书贤

谭百宏, 邱志军, 张祎, 何书贤. 网联环境下考虑非优先车辆延误的公交优先信号控制方法[J]. 交通信息与安全, 2022, 40(3): 86-95. doi: 10.3963/j.jssn.1674-4861.2022.03.009
引用本文: 谭百宏, 邱志军, 张祎, 何书贤. 网联环境下考虑非优先车辆延误的公交优先信号控制方法[J]. 交通信息与安全, 2022, 40(3): 86-95. doi: 10.3963/j.jssn.1674-4861.2022.03.009
TAN Baihong, QIU Zhijun, ZHANG Yi, HE Shuxian. A Signal Control Method for Bus Priority Considering the Delay of Non-priority Vehicles in a Connected-vehicle Environment[J]. Journal of Transport Information and Safety, 2022, 40(3): 86-95. doi: 10.3963/j.jssn.1674-4861.2022.03.009
Citation: TAN Baihong, QIU Zhijun, ZHANG Yi, HE Shuxian. A Signal Control Method for Bus Priority Considering the Delay of Non-priority Vehicles in a Connected-vehicle Environment[J]. Journal of Transport Information and Safety, 2022, 40(3): 86-95. doi: 10.3963/j.jssn.1674-4861.2022.03.009

网联环境下考虑非优先车辆延误的公交优先信号控制方法

doi: 10.3963/j.jssn.1674-4861.2022.03.009
基金项目: 

国家自然科学基金项目 52172332

道路交通安全公安部重点实验室开放课题项目 2020ZDSYSKFKT06

详细信息
    作者简介:

    谭百宏(1996—),硕士研究生.研究方向:交通自适应控制.E-mail: 292849@whut.edu.cn

    通讯作者:

    邱志军(1979—),博士,教授.研究方向:智能交通系统、车路协同. E-mail: zqiu@whut.edu.cn

  • 中图分类号: U491.4

A Signal Control Method for Bus Priority Considering the Delay of Non-priority Vehicles in a Connected-vehicle Environment

  • 摘要: 网联环境具有数据采集和交互方面的优势,能更精确地评估交通需求,更科学地实施交通管控措施。根据公交车与非优先车辆权重及延误分布差异,研究了考虑非优先车辆延误的公交优先单点信号控制方法。利用交叉口车辆轨迹数据计算轨迹样本到达率参数,根据车辆到达交叉口的分布特征构建各相位的车辆到达率概率函数,并采用极大似然估计预测到达率,基于交通流冲击波模型分别计算出各相位的排队波、驶离波和消散波波速。公交车数量少权重较高且网联化程度高,利用基于冲击波的时距图推导延误表达式;而非优先车辆数量多单车权重低且网联化程度低,利用基于到达率的定数理论推导延误表达式。按乘员数对公交车延误值和非优先车辆延误值进行加权,以加权延误最小为目标函数建立了混合整数线性规划模型,解得相位时长整数解,并反馈到信号机系统实现公交优先自适应信号控制。以武汉市车城北路与东风大道交叉口为对象,采集不同时段交叉口流量数据,利用SUMO软件开展仿真实验,结果表明:相比优化前,低、中、高流量情况下公交车单车平均延误时间分别减少25.63%、25.25%、18.32%;同等条件下平均每周期非优先车辆延误时间分别减少8.80%、4.68%、1.99%;同等条件下平均每周期加权延误时间分别减少20.98%、9.39%、12.70%。证明所提方法能较好地适配交通需求,且流量较低时效果最好。

     

  • 图  1  智能网联交叉口示意图

    Figure  1.  Intelligent connected intersection diagram

    图  2  公交车时空轨迹图

    Figure  2.  Illustration of bus trajectory

    图  3  时间-车辆数曲线图

    Figure  3.  Time-vehicle number diagram

    图  4  实验场景图

    Figure  4.  Experimental scenario

    图  5  优化前后延误对比

    Figure  5.  Delay comparison of before and after optimization

    表  1  公交延误预测精度表

    Table  1.   Bus delay estimation accuracy chart  单位: s

    交通流状况 延误差均值 最大延误差 延误差标准差
    低流量 1.35 6.54 5.67
    中流量 1.48 3.52 1.93
    高流量 2.27 5.64 3.49
    下载: 导出CSV

    表  2  加权延误预测精度表

    Table  2.   Weighted delay estimation accuracy chart

    组别 预计延误比 实测延误比 比值
    1 1.13 1.19 0.95
    2 2.07 2.24 0.92
    3 1.24 1.31 0.94
    4 1.37 1.18 1.16
    5 3.69 3.87 0.95
    6 4.62 4.45 1.04
    下载: 导出CSV

    表  3  仿真参数设置

    Table  3.   Simulation parameters

    参数 取值或分布
    网联公交通信距离/m 500
    Krauss最小车头时距/s N(1.1, 0.2)
    Krauss静止安全距离/m N(1.5, 0.5)
    Krauss控制参数σ N(0.5, 0.2)
    社会车辆长度/m 5
    公交车长度/m 12
    公交车静止安全距离/m 3
    下载: 导出CSV

    表  4  交通流量参数表

    Table  4.   Traffic flow parameters chart

    交通流状况 组别 车辆类型 流量/(veh/h) 饱和度/%
    西北 东南 西南 东北 合计 总流量
    1 社会车 352 385 266 214 1 217 1 280 31.26
    公交车 25 26 6 6 63
    低流量 2 社会车 382 410 272 220 1 284 1 350 32.89
    公交车 28 25 6 7 66
    3 社会车 377 416 258 207 1 258 1 324 31.80
    公交车 27 27 6 6 66
    4 社会车 532 615 380 356 1 883 1 979 45.65
    公交车 39 42 8 7 96
    中流量 5 社会车 526 662 402 368 1 958 2 062 46.94
    公交车 42 46 7 9 104
    6 社会车 545 635 406 362 1 948 2 047 47.86
    公交车 39 41 9 10 99
    7 社会车 862 693 479 394 2 428 2 559 66.06
    公交车 58 53 10 10 131
    高流量 8 社会车 882 782 505 404 2 573 2 703 68.53
    公交车 54 54 11 11 130
    9 社会车 933 837 531 452 2 753 2 883 72.13
    公交车 56 51 11 12 130
    下载: 导出CSV
  • [1] ANDRE C, ANNE H, JOAN L W. Passengers'perception of and behavioral adaptation to unreliability in public transportation[J]. Transportation Research Record: Journal of the Transportation Research Board, 2013(1): 153-162.
    [2] 马万经, 杨晓光. 公交信号优先控制策略研究综述[J]. 城市交通, 2010, 8(6): 70-78+16. doi: 10.3969/j.issn.1672-5328.2010.06.012

    MA W J, YANG X G. A review of prioritizing signal strategies for bus services[J]. Urban Transport of China, 2010, 8 (6): 70-78+16. (in Chinese) doi: 10.3969/j.issn.1672-5328.2010.06.012
    [3] 林永杰, 杨险峰, 邹难, 等. 城市交通干道上被动式公交信号优先控制[J]. 东北大学学报(自然科学版), 2013, 34(9): 1227-1231. doi: 10.3969/j.issn.1005-3026.2013.09.003

    LIN Y J, YANG X F, ZOU N, et al. New passive transit signal priority control strategy for the bus vehicles at urban arteries[J]. Journal of Northeastern University(Natural Science Edition), 2013, 34(9): 1227-1231. (in Chinese) doi: 10.3969/j.issn.1005-3026.2013.09.003
    [4] 马万经, 杨晓光. 基于车道的单点交叉口公交被动优先控制模型[J]. 中国公路学报, 2010, 23(5): 96-101. doi: 10.3969/j.issn.1001-7372.2010.05.015

    MA W J, YANG X G. Lane-based optimization model of passive bus priority control for isolated intersection[J]. China Journal of Highway and Transport, 2010, 23(5): 96-101(in Chinese) doi: 10.3969/j.issn.1001-7372.2010.05.015
    [5] 窦慧丽, 马万经, 王国华. 基于公交优先的单点交叉口车道信号协同配置模型[J]. 公路交通科技, 2019, 36(11): 75-82. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201911010.htm

    DOU H L, MA W J, WANG G H. An integrated lane-marking and signal timing model for isolated intersection based on transit priority[J]. Journal of Highway and Transportation Research and Development, 2019, 36(11): 75-82(in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201911010.htm
    [6] 马万经, 杨晓光. 单点公交优先感应控制策略效益分析与仿真验证[J]. 系统仿真学报, 2008, 20(12): 3309-3313. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200812062.htm

    MA W J, YANG X G. Efficiency analysis of transit signal priority strategies on isolated intersection[J]. Journal of System Simulation, 2008, 20(12): 3309-3313. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200812062.htm
    [7] 李振龙, 王保菊, 金雪, 等. 综合考虑公交相位优先和非公交相位补偿的单点信号优化方法[J]. 科学技术与工程, 2015, 15(12): 109-113+117. doi: 10.3969/j.issn.1671-1815.2015.12.018

    LI Z L, WANG B J, JIN X, et al. A signal priority method considering bus phase priority and non-bus phase compensation at an intersection[J]. Science Technology and Engineering, 2015, 15(12): 109-113+117. (in Chinese) doi: 10.3969/j.issn.1671-1815.2015.12.018
    [8] XU H, PENG L Q, SIKDER R, et al. Development and evaluation of adaptive transit signal priority control with updated transit delay model[J]. Transportation Research Record: Journal of the Transportation Research Board, 2014(1): 45-54. (in Chinese)
    [9] 汪林. 基于预测的快速公交信号优先设计及效果仿真[J]. 公路交通科技, 2017, 34(6): 129-135. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201706019.htm

    WANG L. Signal priority design for bus rapid transit based on prediction method and effect simulation[J]. Journal of Highway and Transportation Research and Development, 2017, 34(6): 129-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201706019.htm
    [10] HE Q, HEAD K L, DING J, et al. Heuristic algorithm for priority traffic signal control[J]. Transportation Research Record: Journal of the Transportation Research Board, 2011(1): 1-7.
    [11] HE Q, HEAD K L, DING J. Multimodal traffic signal control with priority, signal actuation and coordination[J]. Transportation Research Part C: Emerging Technologies, 2014 (46): 65-82.
    [12] YE Z R, XU M T. Decision model for resolving conflicting transit signal priority requests[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 18(1): 1-10.
    [13] 张鹏, 李文权, 常玉林, 等. 基于车速引导的交叉口公交优先多申请优化控制模型[J]. 中国公路学报, 2017, 30(9): 109-115. doi: 10.3969/j.issn.1001-7372.2017.09.014

    ZHANG P, LI W Q, CHANG Y L, et al. Optimal control model of multiple bus signal priority requests for isolated intersection based on speed guidance[J]. China Journal of Highway and Transport, 2017, 30(9): 109-115. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.09.014
    [14] TRUONG L T, CURRIE G, WALLACE M, et al. Coordinated transit signal priority model considering stochastic bus arrival time[J]. IEEE Transactions on Intelligent Transportation, 2018, 20(4): 1269-1277.
    [15] 蔡雅苹, 王伟智. 基于公交优先的多路口车速引导控制方法[J]. 福州大学学报(自然科学版), 2019, 47(5): 700-706. https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201905023.htm

    CAI Y P, WANG W Z. Speed guidance control model at arterial based on the bus priority[J]. Journal of Fuzhou University(Natural Science Edition), 2019, 47(5): 700-706. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201905023.htm
    [16] 强添纲, 刘涛, 裴玉龙, 等. 考虑绿灯延长的干线公交绿波优化控制模型[J]. 交通信息与安全, 2021, 39(2): 87-94. doi: 10.3963/j.jssn.1674-4861.2021.02.011

    QIANG T G, LIU T, PEI Y L, et al. A green wave optimization control model of trunk buses considering green extension[J]. Journal of Transport Information and Safety, 2021, 39(2): 87-94. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.02.011
    [17] JIA H, PARK B B, PARKANY A E. Transit signal priority with connected vehicle technology[J]. Transportation Research Record: Journal of the Transportation Research Board, 2014(1): 20-29.
    [18] 周莉, 暨育雄, 王一喆. 信息交互环境下公交信号优先控制仿真与评估[J]. 武汉理工大学学报(交通科学与工程版), 2017, 41(5): 816-820. doi: 10.3963/j.issn.2095-3844.2017.05.021

    ZHOU L, JI Y X, WANG Y Z. Simulation and evaluation of bus signal priority control in information interaction environment[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2017, 41(5): 816-820. (in Chinese) doi: 10.3963/j.issn.2095-3844.2017.05.021
    [19] 柏海舰, 任桂香, 董瑞娟, 等. 网联环境下基于站点时刻表的公交信号优先方法[J]. 重庆交通大学学报(自然科学版), 2018, 37(7): 85-91. doi: 10.3969/j.issn.1674-0696.2018.07.15

    BAI H J, REN G X, DONG R J, et al. Transit signal priority method based on schedule under connected vehicle environment[J]. Journal of Chongqing Jiaotong University(Natural Science), 2018, 37(7): 85-91. (in Chinese) doi: 10.3969/j.issn.1674-0696.2018.07.15
    [20] 乔文鑫, 王锭. 基于交叉口可靠性的公交优先信号配时优化模型[J]. 交通运输系统工程与信息, 2017, 17(2): 54-59+67. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201702009.htm

    QIAO W X, WANG D. A transit signal priority optimizing model based on reliability[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(2): 54-59+67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201702009.htm
    [21] 董志国, 吴冬升, 包颖. 智能网联公交的三大发展趋势[J]. 智能网联汽车, 2021(5): 68-71. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNWL202105023.htm

    DONG Z G, WU D S, BAO Y. Three development trends of intelligent networked public transport[J]. Intelligent Connected Vehicles, 2021(5): 68-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNWL202105023.htm
    [22] 《中国公路学报》编辑部. 中国交通工程学术研究综述· 2016[J]. 中国公路学报, 2016, 29(6): 1-161. doi: 10.3969/j.issn.1001-7372.2016.06.001

    Editorial Department of China Journal of Highway and Transport. Review on China's traffic engineering research progress: 2016[J]. China Journal of Highway and Transport, 2016, 29(6): 1-161. (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.06.001
    [23] 谈超鹏, 姚佳蓉, 唐克双. 基于抽样车辆轨迹数据的信号控制交叉口排队长度分布估计[J]. 中国公路学报, 2021, 34 (11): 282-295. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202111023.htm

    TAN C P, YAO J R, TANG K S. Queue length distribution estimation at signalized intersections based on sampled vehicle trajectory data[J]. China Journal of Highway and Transport, 2021, 34(11): 282-295. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202111023.htm
    [24] 王福建, 孙凌涛, 钱伟. 基于改进后冲击波剖面模型的宏观基本图特性研究[J]. 公路交通科技, 2016, 33(4): 127-133. doi: 10.3969/j.issn.1002-0268.2016.04.020

    WANG F J, SUN L T, QIAN W. Characteristics of macroscopic fundamental diagram based on SPM[J]. Journal of Highway and Transportation Research and Development, 2016, 33(4): 127-133. (in Chinese) doi: 10.3969/j.issn.1002-0268.2016.04.020
    [25] CHENG Y, QIN X, JIN J, et al. An exploratory shockwave approach to estimating queue length using probe trajectories[J]. Journal of Intelligent Transportation Systems, 2012, 16(1): 12-23.
    [26] 慈玉生. 交通系统建模与仿真[M]. 北京: 人民交通出版社, 2020.

    CI Y S. Traffic system modelling and simulation[M]. Beijing: China Communications Press, 2020. (in Chinese)
    [27] 李桂瑞. 车联网环境下实时信息驱动的自适应交通管理研究[D]. 天津: 天津工业大学, 2020.

    LI G R. Research on real-time information driven adaptive traffic management in Internet of vehicles environment[D]. Tianjing: Tiangong University, 2020. (in Chinese)
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  1040
  • HTML全文浏览量:  484
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-13
  • 网络出版日期:  2022-07-25

目录

    /

    返回文章
    返回