留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑多模式失效概率的长下坡路段重型卡车事故预测模型

尹燕娜 温惠英

尹燕娜, 温惠英. 考虑多模式失效概率的长下坡路段重型卡车事故预测模型[J]. 交通信息与安全, 2022, 40(3): 1-9. doi: 10.3963/j.jssn.1674-4861.2022.03.001
引用本文: 尹燕娜, 温惠英. 考虑多模式失效概率的长下坡路段重型卡车事故预测模型[J]. 交通信息与安全, 2022, 40(3): 1-9. doi: 10.3963/j.jssn.1674-4861.2022.03.001
YIN Yanna, WEN Huiying. Development of Crash Prediction Models Involving Heavy-duty Trucks over Long Downhill Segments Considering Multi-mode Failure Probability[J]. Journal of Transport Information and Safety, 2022, 40(3): 1-9. doi: 10.3963/j.jssn.1674-4861.2022.03.001
Citation: YIN Yanna, WEN Huiying. Development of Crash Prediction Models Involving Heavy-duty Trucks over Long Downhill Segments Considering Multi-mode Failure Probability[J]. Journal of Transport Information and Safety, 2022, 40(3): 1-9. doi: 10.3963/j.jssn.1674-4861.2022.03.001

考虑多模式失效概率的长下坡路段重型卡车事故预测模型

doi: 10.3963/j.jssn.1674-4861.2022.03.001
基金项目: 

国家自然科学基金项目 52172345

详细信息
    作者简介:

    尹燕娜(1987—),博士研究生. 研究方向:道路交通安全. E-mail:1241085280@qq.com

    通讯作者:

    温惠英(1965—),博士,教授. 研究方向:道路交通安全、交通规划等. E-mail:hywen@scut.edu.cn

  • 中图分类号: U491.31

Development of Crash Prediction Models Involving Heavy-duty Trucks over Long Downhill Segments Considering Multi-mode Failure Probability

  • 摘要: 为挖掘多模式失效概率与长下坡路段重型卡车事故之间的关系,建立了重型卡车在长下坡路段的多模式失效概率与车辆事故之间的关系模型。并针对重型卡车在长下坡路段可能的失效模式,如侧滑、侧翻、视距不足、制动失效,在此基础上建立了多模式失效概率预测模型;通过蒙特卡罗法模拟并求解单模式失效的概率,宽界限法求解失效系统的多模式失效概率;将多模式失效概率作为解释变量与其他道路因素结合,分别建立泊松模型、随机效应泊松模型、随机参数泊松模型,将多模式失效概率与重型卡车事故建立函数关系;对比3种模型的拟合优度指标,优选出最优事故预测模型,用来挖掘重型卡车事故与多模式失效概率之间的关系。以华盛顿州71段长下坡10年的重型卡车事故数据及道路设计数据进行方法验证。结果表明:随机参数泊松模型与随机效应泊松模型的拟合优度相差较小,二者均优于泊松模型;当考虑多模式失效概率时,平曲线半径、纵坡坡度、超高对重型卡车事故的影响均不显著,即三者的影响被削弱,尤其是平曲线半径和超高,多模式失效概率的弹性(0.239)远大于二者的弹性(平曲线半径和超高的弹性分别仅为0.097和0.002);重型卡车的事故与多模式失效概率近似线性关系,且截距不为0。即多模式失效概率可用于道路安全分析的表征指标,但与事故概率不等价。

     

  • 图  1  车辆在弯坡路段的受力分析

    Figure  1.  Force analysis of vehicles on combination sections of vertical and horizontal curve

    图  2  预测事故数与实际事故数比较

    Figure  2.  Comparison between predicted and actual crashes value

    图  3  重型卡车事故数与多模式失效概率的关系

    Figure  3.  Relationship between heavy truck crash values and multi-mode failure probability

    表  1  固定变量及取值

    Table  1.   Fixed variables and values

    符号 变量解释 变量值
    m 车辆的总重量/kg 20 000
    m0 满载质量/kg 30 000
    T0 制动器的初始温度/℃ 本文取130
    g 重力加速度/(m/s2) 9.81
    ρθ 空气密度/(kg/m3) 1.225 8
    A2 重型车辆的迎风面积/m2 6
    κ 车辆的空气阻力系数 1
    z0 主传动比 5.833
    zv 各档传动比
    q 后轮制动器数 4
    η 传动效率 0.83
    m1 所有后轮承受质量之和/kg 总质量的90%
    γ 制动力分配系数/% 27.2
    R1 后轮动力半径/m 0.515
    R2 后轮滚动半径/m 0.527
    m2 制动鼓质量/kg 62.268
    A1 制动鼓的表面积/m2 0.347
    c 制动鼓的比热容/(J/kg·℃) 482
    系数 τ0 = m/m0τ1 = 66.34;τ = 1.0475; τ2 = 0.050 1
    L 路段长度/km
    hr/hg 0.25
    rφ 侧倾率 0.05
    B/2hg 0.58
    μ2 湿滑路面提供的附着系数 0.4
    下载: 导出CSV

    表  2  变量的统计特征

    Table  2.   Statistical characteristics of variables

    变量 均值 标准差 最大值 最小值
    重型卡车事故数 9.085 14.602 80 0
    暴露变量
    路段长度/km 3.676 3.950 19.614 1.030
    年平均日交通量/(辆/天) 146 33 250 64 165 789 531
    交通情况变量
    法定限速/(km/h) 84.416 15.623 112.63 40.225
    卡车的百分比/% 12.788 8.959 38.949 0.184
    道路设计参数
    平曲线半径/m 0.416 0.438 2.329 0.011
    纵坡/% 3.996 0.815 6.478 2.804
    超高/% 1.646 3.231 10 0
    多模式失效概率 0.391 0.311 1 0
    下载: 导出CSV

    表  3  考虑多模式失效概率的随机效应泊松模型估计结果

    Table  3.   estimation results of crash prediction model considering multi-mode failure probability

    变里名称 泊松模型 随机效应泊松模型 随机参数泊松模型
    系数值 标准误 P 系数值 标准误 P 系数值 标准误 P 弹性
    截距项 -9.595*** 0.711 0 -8.769*** 0.711 -8.315*** 0.719 0
    参数分布标准差 0.585*** 0.049 0.250*** 0.042
    暴露变量
    路段长度的对数 0.124*** 0.011 0 0.142*** 0.012 0 0.138*** 0.012 0 0.506
    年平均日交通量对数 0.967*** 0.055 0 0.941*** 0.058 0 0.903*** 0.059 0 7.805
    参数分布标准差 0.057*** 0.005
    交通情况变量
    法定限速 0.015*** 0.004 0 0.006* 0.004 0.094 0.005 0.004 0.250 0.383
    卡车的百分比 0.018** 0.009 0.037 0.029*** 0.009 0.001 0.032*** 0.009 0.001 0.412
    道路设计参数
    平曲线半径 -0.11 0.144 0.442 0.167 0.15 0.265 0.234 0.151 0.123 0.097
    纵坡 0.182** 0.074 0.014 0.077 0.086 0.369 0.067 0.087 0.441 0.267
    超高 -0.046*** 0.015 0.002 -0.007 0.016 0.642 0.001 0.016 0.934 0.002
    多模式失效概率 0.459** 0.2 0.022 0.541** 0.212 0.011 0.610*** 0.215 0.005 0.239
    样本数量 71 71 71
    参数数量 9 10 11
    对数似然值 -232.031 -183.496 -182.502
    仅含常数项的对数似然值 -643.079 -1653.35 -1653.35
    麦克费登, 0.639 0.889 0.89
    A/C 482.1 387 387
    MAD 4.077 1.02 1.012
    均方根误差 6.613 1.346 1.316
    注:***,**,* 分别表示在1%、5%和10%水平上显著。
    下载: 导出CSV
  • [1] 张驰, 侯宇迪, 秦际涵, 等. 基于制动毂温升的连续下坡安全设计方法[J]. 华南理工大学学报(自然科学版), 2019, 47 (10): 139-150. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201910016.htm

    ZHANG C, HOU Y D, QIN J H, et al. Safety design method of long slope downhill slope based on temperature increase of brake drum[J]. Journal of South China University of Technology(Natural Science Edition), 2019, 47(10): 139-150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201910016.htm
    [2] REZAPOUR M, MOOMEN M, KSAIBATI K. Ordered logistic models of influencing factors on crash injury severity of single and multiple-vehicle downgrade crashes: A case study in Wyoming[J]. Journal of Safety Research, 2019(68) 107-118.
    [3] 陈富坚, 邓伟建, 徐培培, 等. 弯坡组合路段可靠性设计方法研究[J]. 公路工程, 2017, 42(3): 98-105, 130. doi: 10.3969/j.issn.1674-0610.2017.03.021

    CHEN F J, DENG W J, XU P P, et al. Reliability design method for combination of vertical and horizontal curves[J]. Highway Engineering, 2017, 42(3): 98-105, 130. (in Chinese) doi: 10.3969/j.issn.1674-0610.2017.03.021
    [4] 张航, 储泽宇, 吕能超, 等. 基于侧向稳定性的圆曲线路段设计指标研究[J]. 交通信息与安全, 2021, 39(2): 28-35. doi: 10.3963/j.jssn.1674-4861.2021.02.004

    ZHANG H, CHU Z Y, LYU N C, et al. Design indices of circular curve section based on lateral stability[J]. Journal of Transport Information and Safety, 2021, 39(2): 28-35. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.02.004
    [5] 中华人民共和国交通运输部. 公路工程技术标准: JTG B01—2014[S]. 北京: 人民交通出版社, 2015.

    Ministry of Transport of the People's Republic of China. Technical standard of highway engineering: JTG B01— 2014[S]. Beijing: China Communications Press, 2015. (in Chinese)
    [6] AASHTO (American Association of State Highway and Transportation Officials). A policy on geometric design of highways and streets[R]. Washington, D. C. : American Association of State Highway and Transportation Officials, 2004.
    [7] IBRABIM S E, SAYED T. Developing safety performance functions incorporating reliability-based risk measures[J]. Accident Analysis & Prevention, 2011, 43(6): 2153-2159.
    [8] IBRAHIM S E, SAYED T, ISMAIL K. Methodology for safety optimization of highway cross-sections for horizontal curves with restricted sight distance[J]. Accident Analysis & Prevention, 2012(49): 476-485.
    [9] SARHAN M, HASSAN Y. Three-dimensional, probabilistic highway design: Sight distance application[J]. Transportation Research Record Journal of the Transportation Research Board, 2008(2060): 10-18.
    [10] RICHL L, SAYED T. Evaluating the safety risk of narrow medians using reliability analysis[J]. Journal of Transportation Engineering, 2006, 132(5): 366-375. doi: 10.1061/(ASCE)0733-947X(2006)132:5(366)
    [11] YOU K, SUN L, GU W. Reliability-based risk analysis of roadway horizontal curves[J]. Journal of Transportation Engineering, 2012, 138(8): 1071-1081. doi: 10.1061/(ASCE)TE.1943-5436.0000402
    [12] ESSAM, SAYEDT, HUSSEIN M. Multimode reliability-based design of horizontal curves[J]. Accident Analysis & Prevention, 2016(93): 124-134.
    [13] MANNERING F L, BHAT C R. Analytic methods in accident research: Methodological frontier and future directions[J]. Analytic Methods in Accident Research, 2014(1): 1-22.
    [14] MOOMEN M, REZAPOUR M, RAJA M, et al. Predicting downgrade crash frequency with the random-parameters negative binomial model: Insights into the impacts of geometric variables on downgrade crashes in Wyoming[J]. IATSS Research, 2020(44): 94-102.
    [15] HOU Q, TARKO A P, MENG X. Investigating factors of crash frequency with random effects and random parameters models: New insights from Chinese freeway study[J]. Accident Analysis & Prevention, 2018(120): 1-12.
    [16] MA Z, ZHANG H, CHIEN S I, et al. Predicting expressway crash frequency using a random effect negative binomial model: A case study in China[J]. Accident Analysis & Prevention, 2017(98): 214-222.
    [17] 张明. 结构可靠度分析: 方法与程序[M]. 北京: 科学出版社, 2009.

    ZHANG M. Structural reliability analysis: methods and procedures[M]. Beijing: Science Press, 2009. (in Chinese)
    [18] 刘远才, 游润东, 杨永红. 道路勘测设计[M]. 北京: 中国电力出版社, 2010.

    LIU Y C, YOU R D, YANG Y H. Road survey and design[M]. Beijing: China Electric Power Press, 2010. (in Chinese)
    [19] 游克思. 基于车辆动力学和可靠性理论的道路安全分析及优化设计研究[D]. 南京: 东南大学, 2012.

    YOU K S. Vehicle dynamics and reliability based highway safety analysis and design optimization[D]. Nanjing: Southeast University, 2012. (in Chinese)
    [20] DENG T, FU J, SHAO Y. Pedal operation characteristics and driving workload on slopes of mountainous road based on naturalistic driving tests[J]. Safety Science, 2019(119): 40-49.
    [21] 苏波. 大货车持续制动性能与山区高速公路纵坡优化设计研究[D]. 上海: 同济大学, 2009.

    SU B. Research on continuous braking performance of truck and optimization design of longitudinal slope of expressway in mountainous area[D]. Shanghai: Tongji University, 2009. (in Chinese)
    [22] 肖润谋, 叶燕仙, 周晓悦, 等. 发动机制动失效的坡长临界值计算[J]. 交通运输工程学报, 2006, 6(4): 122-126. doi: 10.3321/j.issn:1671-1637.2006.04.027

    XIAO R M, YE Y X, ZHOU X R, et al. Critical slope length computation of engine brake inefficacy[J]. Journal of Traffic and Transportation Engineering, 2006, 6(4): 122-126. (in Chinese) doi: 10.3321/j.issn:1671-1637.2006.04.027
    [23] 周荣贵. 公路纵坡坡度与坡长限制的研究[D]. 北京: 北京工业大学, 2004.

    ZHOU R G. Study on highway longitudinal gradient and grade length limit[D]. Beijing: Beijing University of Technology, 2004. (in Chinese)
    [24] 王晓安, 李志中, 计斌, 等. 山区双车道公路平曲线路段运行速度预测模型研究[J]. 黑龙江交通科技, 2015, 38(7): 4-6. doi: 10.3969/j.issn.1008-3383.2015.07.003

    WANG X A, LI Z Z, JI B, et al. Study on the prediction operating speed model on the mountainous two-lane highway horizontal curve section[J]. Communications Science and Technology Heilongjiang, 2015, 38(7): 4-6. (in Chinese) doi: 10.3969/j.issn.1008-3383.2015.07.003
    [25] LORDD, MANNERING F. The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives[J]. Transportation Research Part A: Policy and Practice, 2010, 44(5): 291-305. doi: 10.1016/j.tra.2010.02.001
    [26] WASHINGTON S P, KARLAFTIS M G, MANNERING F. Statistical and econometric methods for transportation data analysis[M]. New York: CRC Press, 2010.
    [27] 胡江碧, 李晓宇, 罗绍建, 等. 基于驾驶行为需求的长大纵坡界定[J]. 北京理工大学学报, 2017, 37(6): 590-594. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201706008.htm

    HU J B, LI X Y, LUO S J. et al. The definition of long steep downgrade based on driver behavior[J]. Transactions of Beijing Institute of Technology, 2017, 37(6): 590-594. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201706008.htm
    [28] 郑晓. 基于货车制动性能的长大下坡行车风险分析及防控措施[D]. 西安: 长安大学, 2014.

    ZHENG X. Research on risk analysis of driving and prevention measures for the long-steep downgrade based on truck braking performance[D]. Xi'an: Chang'an University, 2014. (in Chinese)
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  2485
  • HTML全文浏览量:  1649
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-01
  • 网络出版日期:  2022-07-25

目录

    /

    返回文章
    返回