留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于车道线虚线角点检测的行车安全视距测算模型

田顺 田山山 杨炜 魏朗 陈涛

田顺, 田山山, 杨炜, 魏朗, 陈涛. 基于车道线虚线角点检测的行车安全视距测算模型[J]. 交通信息与安全, 2022, 40(2): 30-37. doi: 10.3963/j.jssn.1674-4861.2022.02.004
引用本文: 田顺, 田山山, 杨炜, 魏朗, 陈涛. 基于车道线虚线角点检测的行车安全视距测算模型[J]. 交通信息与安全, 2022, 40(2): 30-37. doi: 10.3963/j.jssn.1674-4861.2022.02.004
TIAN Shun, TIAN Shanshan, YANG Wei, WEI Lang, CHEN Tao. A Model for Estimating Driving Sight Distances Based on Corner Point of Broken Line of Roadway[J]. Journal of Transport Information and Safety, 2022, 40(2): 30-37. doi: 10.3963/j.jssn.1674-4861.2022.02.004
Citation: TIAN Shun, TIAN Shanshan, YANG Wei, WEI Lang, CHEN Tao. A Model for Estimating Driving Sight Distances Based on Corner Point of Broken Line of Roadway[J]. Journal of Transport Information and Safety, 2022, 40(2): 30-37. doi: 10.3963/j.jssn.1674-4861.2022.02.004

基于车道线虚线角点检测的行车安全视距测算模型

doi: 10.3963/j.jssn.1674-4861.2022.02.004
基金项目: 

国家自然科学基金项目 52072047

陕西省自然科学基础研究计划青年项目 2022JQ-007

中央高校基本科研业务费资助项目 300102220106

详细信息
    作者简介:

    田顺(1989—),博士,讲师. 研究方向:道路交通安全. E-mail:tianshun@chd.edu.cn

    通讯作者:

    魏朗(1957—),博士,教授. 研究方向:道路交通安全. E-mail:qch_1@chd.edu.cn

  • 中图分类号: U46.1

A Model for Estimating Driving Sight Distances Based on Corner Point of Broken Line of Roadway

  • 摘要: 开展行车视距调查对于营运期公路安全评价至关重要,这对车载条件下行车视距检测提出了要求。针对现有基于车道线图像特征点所构建的视距模型精确度不高的问题,提出了1种以车道线虚线角点为关键特征的行车安全视距测算模型。在车载设备获取的图像预处理基础上,采用轮廓跟踪法对车道线虚线轮廓进行提取,通过设定轮廓尖锐度阈值以实现对车道线虚线角点的初步筛选;使用最大、最小距离法对候选角点进行聚类分类,将每类中尖锐度最大的点判定为真实角点;此外,结合车道线虚线图像梯形特征实现对角点的精确提取;根据成像原理的坐标转换关系,通过解构角点在世界坐标和像素坐标之间的映射关系以求解二者之间的转换矩阵,得到实际道路环境的行车安全视距测算模型;将模型所测算的行车视距与运行车速所需的行车视距进行对比,实现对不同道路线形下行车视距的评价。通过实车实验对所提行车视距测算模型进行动态和静态检测精度验证。结果表明:该模型在静态条件下的行车视距检测误差小于7%,低于采用车道线特征点提取方法检测的误差;在动态车载条件可实现行车视距的连续检测,表明在该模型能适应动态条件对行车视距的检测。该模型可实时动态检测行车视距,为营运期公路安全评价提供支撑。

     

  • 图  1  车道线虚线角点检测与提取流程图

    Figure  1.  Flowchart of detection and extraction of dotted line corners of roadways

    图  2  邻域判断顺序图

    Figure  2.  Neighboring area judgment sequence diagram

    图  3  局部轮廓线放大示意图

    Figure  3.  Schematic diagram of local contour line

    图  4  轮廓、角点提取局部图

    Figure  4.  Partial map of contour and corner point extraction

    图  5  车道线虚线角点提取试验结果

    Figure  5.  Extraction test results of the dotted line corners of the roadway

    图  6  车道线虚线角点提取流程

    Figure  6.  Flowchart for extracting the dotted line corner points of the roadway

    图  7  车道线虚线角点成像示意图

    Figure  7.  Schematic diagram of imaging of dotted corners of roadways

    图  8  试验路段图像示例

    Figure  8.  Picture of the test roads

    图  9  与文献[7]~[8]的结果对比

    Figure  9.  Comparison results with methods in references [7]~[8]

    图  10  参数录入信息

    Figure  10.  Import of parameters

    图  11  视距计算结果输出

    Figure  11.  Output of sight distance calculation result

    表  1  二、三、四级公路的停车、会车和超车视距

    Table  1.   Sight distance for parking, meeting and overtaking on second, third, and fourth level highways

    设计速度/(km/h) 停车视距/m 会车视距/m 超车视距/m
    80 110 220 550
    60 75 150 350
    40 40 80 200
    下载: 导出CSV

    表  2  计算误差

    Table  2.   Calculation error

    序号 测量值/m 计算值/m 绝对误差/m 相对误差/%
    1 24.2 25.51 1.31 5.41
    2 17.4 18.14 0.74 4.52
    3 20.2 21.34 1.14 5.64
    4 25.3 27.01 1.71 6.76
    5 23.3 24.92 1.62 6.95
    6 29.8 31.76 1.96 6.58
    7 18.5 19.19 0.69 3.73
    8 21.3 22.61 1.31 6.15
    下载: 导出CSV
  • [1] 张卫华, 张鑫, 曹世全, 等. 适应能见度变化的道路线形诱导标志设置方法[J]. 中国安全科学学报, 2019, 29(7): 76-83. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201907017.htm

    ZHANG W H, ZHANG X, CAO S Q, et al. Road alignment induction sign setting method adapting to visibility change[J]. China Safety Science Journal, 2019, 29(7): 76-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201907017.htm
    [2] 文森, 梁波, 肖尧, 等. 基于反应时间的公路隧道接近段停车视距研究[J]. 交通信息与安全, 2021, 39(2): 43-52. doi: 10.3963/j.jssn.1674-4861.2021.02.006

    WEN S, LIANG B, XIAO Y, et al. A stopping distance in access zone of highway tunnel based on reaction time[J]. Journal of Transport Information and Safety, 2021, 39(2): 43-52 (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.02.006
    [3] WANG Y, TEOH K, SHEN D G. Lane detection and tracking using B-Snake[J]. Image and Vision Computing. 2004, 22 (4): 269-280. doi: 10.1016/j.imavis.2003.10.003
    [4] 郭磊, 李克强, 王建强, 等. 应用方向可调滤波器的车道线识别方法[J]. 机械工程学报, 2008(8): 214-218+226. doi: 10.3321/j.issn:0577-6686.2008.08.038

    GUO L, LI K Q, WANG J Q, et al. Lane detection method by steerable filters[J]. Chinese Journal of Mechanical Engineering, 2008(8): 214-218+226. (in Chinese) doi: 10.3321/j.issn:0577-6686.2008.08.038
    [5] ANDRDE C, BUENO F, FRANCO R, et al. A novel strategy for road lane detection and tracking based on a vehicle's forward monocular camera[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(4): 1497-1507.
    [6] XING Y, LYU C, WANG H J, et al. Dynamic integration and online evaluation of vision-based lane detection algorithms[J]. IET Intelligent Transport Systems, 2018, 13(1): 55-62.
    [7] ZHANG Z Y, QIAN W, PAN L, et al. Adaptive zoom distance measuring system of camera based on the ranging of binocular vision[J]. Modern Applied Science, 2012, 6(5): 43-47.
    [8] 高波. 基于单目视觉的公路视距检测技术研究[D]. 西安: 长安大学, 2017.

    GAO B. Research on road slight distance detection technology based on monocular vision[D]. Xi'an: Chang'an University, 2017. (in Chinese)
    [9] 白琛琛. 高等级公路弯道视距测算及安全评价方法研究[D]. 西安: 长安大学, 2020.

    BAI C C. Research on sight distance calculation and safety evaluation method for high-grade highway curves[D]. Xi'an: Chang'an University, 2020.(in Chinese)
    [10] CHEN Y, HE M Y. Sharp curve lane boundaries projective model and detection[C]. 10th International Conference on Industrial Informatics, Beijing, China: IEEE, 2012.
    [11] AGRAWAL S, DEO K, HALDAR S, et al. Off-road lane detection using superpixel clustering and ransac curve fitting[C]. 15th International Conference on Control, Automation, Robotics and Vision(ICARCV), Singapore: IEEE, 2018
    [12] SCHOMERUS V, ROSEBROCK D, WAHL M. Camera-based lane border detection in arbitrarily structured environments[C]. 2014 IEEE Intelligent Vehicles Symposium, Michigan, USA: IEEE, 2014.
    [13] PARK Y, HWANG Y. Robust range estimation with a monocular camera for vision-based forward collision warning system[J]. The Scientific World Journal, 2014(12): 1-9.
    [14] 陈雨人, 付云天, 汪凡. 基于支持向量回归的视距计算模型建立和应用[J]. 中国公路学报, 2018, 31(4): 105-113. doi: 10.3969/j.issn.1001-7372.2018.04.013

    CHEN Y, FU Y T, WANG F. Establishment and application of slight distance computing model based on support vector regression[J]. China Journal of Highway and Transport, 2018, 31(4): 105-113. doi: 10.3969/j.issn.1001-7372.2018.04.013
    [15] LEBMANN S, MEUTER M, MULLER D, et al. Probabilistic distance estimation for vehicle tracking application in monocular vision[C]. 4th IEEE Intelligent Vehicles Symposium, Gothenburg, Sweden: IEEE, 2016.
    [16] JWP A, YWH A, YZY A, et al. Development of an embedded road boundary detection system based on deep learning[J]. Image and Vision Computing, 2020, 100(5), 82-95.
    [17] 曹思佳, 代扬, 余洪山, 等. 基于机器视觉的机械表走时精度测量[J]. 湖南大学学报(自然科学版), 2020, 47(12): 86-94. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202012011.htm

    CAO S J, DAI Y, YU H S, et al. Accuracy measurement of mechanical watch travel time based on machine vision[J]. Journal of Hunan University(Natural Science), 2020, 47 (12): 86-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202012011.htm
    [18] 钱文光, 林小竹. 基于轮廓尖锐度的图像角点检测算法[J]. 计算机工程, 2008(6): 202-204. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC200806075.htm

    QIAN W G, LIN X Z. Detection algorithm of image corner based contour sharp degree[J]. Computer Engineering, 2008 (6): 202-204.(in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC200806075.htm
    [19] 刘燕. 基于抽样和最大最小距离法的并行K-means聚类算法[J]. 智能计算机与应用, 2018, 8(6): 37-39+43. doi: 10.3969/j.issn.2095-2163.2018.06.008

    LIU Y. Parallel K-means clustering algorithm based on sampling and maximum & minimum distance method[J]. Intelligent Computer and Applications, 2018, 8(6): 37-39+43. (in Chinese) doi: 10.3969/j.issn.2095-2163.2018.06.008
    [20] 郑榜贵, 田炳香, 段建民. 基于交比不变量的摄像机标定方法[J]. 北京工业大学学报, 2008(5): 476-480. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD200805008.htm

    ZHEN B G, TIAN B X, DUAN J M. Camera calibration approach based on cross-ratio invariability[J]. Journal of Beijing University of Technology, 2008(5): 476-480. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD200805008.htm
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  1000
  • HTML全文浏览量:  554
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-23
  • 网络出版日期:  2022-05-18

目录

    /

    返回文章
    返回