留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于T-S模糊故障树和贝叶斯网络的重特大交通事故成因分析

郑来 顾鹏 卢健

郑来, 顾鹏, 卢健. 基于T-S模糊故障树和贝叶斯网络的重特大交通事故成因分析[J]. 交通信息与安全, 2021, 39(4): 43-51+59. doi: 10.3963/j.jssn.1674-4861.2021.04.006
引用本文: 郑来, 顾鹏, 卢健. 基于T-S模糊故障树和贝叶斯网络的重特大交通事故成因分析[J]. 交通信息与安全, 2021, 39(4): 43-51+59. doi: 10.3963/j.jssn.1674-4861.2021.04.006
ZHENG Lai, GU Peng, LU Jian. A Cause Analysis of Extraordinarily Severe Traffic Crashes Based on T-S Fuzzy Fault Tree and Bayesian Network[J]. Journal of Transport Information and Safety, 2021, 39(4): 43-51+59. doi: 10.3963/j.jssn.1674-4861.2021.04.006
Citation: ZHENG Lai, GU Peng, LU Jian. A Cause Analysis of Extraordinarily Severe Traffic Crashes Based on T-S Fuzzy Fault Tree and Bayesian Network[J]. Journal of Transport Information and Safety, 2021, 39(4): 43-51+59. doi: 10.3963/j.jssn.1674-4861.2021.04.006

基于T-S模糊故障树和贝叶斯网络的重特大交通事故成因分析

doi: 10.3963/j.jssn.1674-4861.2021.04.006
基金项目: 

国家自然科学基金面上项目 52072097

国家自然科学基金青年基金项目 71701055

详细信息
    通讯作者:

    郑来(1985—),博士,副教授. 研究方向:道路交通安全理论与技术. E-mail: zhenglai@hit.edu.cn

  • 中图分类号: U491.31

A Cause Analysis of Extraordinarily Severe Traffic Crashes Based on T-S Fuzzy Fault Tree and Bayesian Network

  • 摘要: 重特大交通事故是最严重的交通事故类型, 为了识别此类事故的主要致因, 融合T-S模糊故障树和贝叶斯网络对其进行深入分析。建立了以重特大交通事故为顶事件, 人、车、路、环境4个因素为中间事件, 24个子因素为基本事件的T-S模糊故障树, 将其转化为贝叶斯网络, 进而双向推理基本事件的重要度和后验概率, 确定主要致因。结果表明: 融合T-S模糊故障树与贝叶斯网络的方法通过正、反向推理提高了重特大交通事故成因分析结果的准确性和可靠性, 确定了操作不当、超速、防护设施不完善、弯坡组合、路面湿滑、未按规定行驶为重特大交通事故的6个主要致因, 并对这6个主要致因之间的组合关系进一步分析, 得到了操作不当和超速对于重特大交通事故更为关键。

     

  • 图  1  T-S模糊故障树与贝叶斯网络

    Figure  1.  T-S fuzzy fault tree and Bayesian network

    图  2  重特大交通事故成因分析T-S模糊故障树

    Figure  2.  T-S fuzzy fault tree for analyzing the causes of extraordinarily severe crashes

    图  3  重特大交通更事故成因分析贝叶斯网络

    Figure  3.  Bayesian network for analyzing the cause of extraordinarily severe crashes

    图  4  6个主要致因中不同数量的致因组合

    Figure  4.  Different number of causative combination of the six major causes

    图  5  重特大交通事故肇事车辆类型

    Figure  5.  Vehicle types of extraordinarily severe crashes

    表  1  重特大交通事故影响因素数据汇总

    Table  1.   Summary of factors influencing extraordinarily severe traffic crashes

    因素分类/编码 子因素/编码 频数
    人的因素/y1 不良状态/y5 疲劳驾驶/x1 13
    酒、毒驾/x2 5
    无证驾驶或与准驾车型不符/x3 29
    注意力不集中/x4 16
    不良行为/y6 超载/x5 99
    超速/x6 92
    操作不当/x7 94
    未按规定行驶/x8 77
    车辆因素/y2 机械故障/y7 制动不良/x9 42
    转向失控/x10 20
    其他 机件质量问题/x11 28
    非法改装/x12 12
    道路因素/y3 不良线形/y8 平面转弯路段/x14 13
    坡道路段/x15 22
    弯坡组合路段/x15 51
    路面不良 路面湿滑/x16 50
    状态/y9 施工路段/x17 16
    防护设施 防护设施不完善/x18 51
    隐患/y10 标志标线不完善/x19 63
    环境因素/y4 不良天气/y11 雨/x20 28
    雪/x21 8
    雾/x22 13
    其他 夜间无照明/x23 17
    视线障碍/x24 8
    下载: 导出CSV

    表  2  根节点状态概率模糊子集

    Table  2.   Fuzzy subset of the state probability of root nodes

    节点 $\tilde{P}\left(x_{i}=0\right)$ $\tilde{P}\left(x_{i}=0.5\right)$ $\tilde{P}\left(x_{i}=1\right)$
    x1 (0.958, 0.950, 0.943) (0.043, 0.050, 0.058)
    x2 (0.984, 0.981, 0.978) (0.016, 0.019, 0.022)
    x3 (0.907, 0.890, 0.874) (0.094, 0.110, 0.127)
    x4 (0.947, 0.938, 0.929) (0.053, 0.062, 0.071)
    x5 (0.674, 0.616, 0.558) (0.188, 0.221, 0.254) (0.139, 0.163, 0.187)
    x6 (0.697, 0.643, 0.589) (0.303, 0.357, 0.411)
    x7 (0.691, 0.636, 0.581) (0.043, 0.050, 0.058)
    x8 (0.747, 0.702, 0.657) (0.016, 0.019, 0.022)
    x9 (0.861, 0.837, 0.813) (0.056, 0.066, 0.076) (0.082, 0.097, 0.112)
    x10 (0.934, 0.922, 0.910) (0.066, 0.078, 0.090)
    x11 (0.907, 0.891, 0.875) (0.093, 0.109, 0.125)
    x12 (0.960, 0.953, 0.946) (0.040, 0.047, 0.054)
    x13 (0.927, 0.914, 0.901) (0.073, 0.086, 0.099)
    x14 (0.877, 0.855, 0.833) (0.123, 0.145, 0.167)
    x15 (0.714, 0.664, 0.614) (0.082, 0.097, 0.112)
    x16 (0.720, 0.671, 0.622) (0.066, 0.078, 0.090)
    x17 (0.911, 0.895, 0.879) (0.089, 0.105, 0.121)
    x18 (0.714, 0.664, 0.614) (0.286, 0.336, 0.386)
    x19 (0.647, 0.585, 0.523) (0.201, 0.237, 0.273) (0.151, 0.178, 0.205)
    x20 (0.844, 0.816, 0.788) (0.095, 0.112, 0.129) (0.061, 0.072, 0.083)
    x21 (0.956, 0.948, 0.940) (0.022, 0.026, 0.030) (0.022, 0.026, 0.030)
    x22 (0.928, 0.915, 0.902) (0.022, 0.026, 0.030) (0.050, 0.059, 0.068)
    x23 (0.905, 0.888, 0.871) (0.089, 0.105, 0.121)
    x24 (0.955, 0.947, 0.939) (0.286, 0.336, 0.386)
    下载: 导出CSV

    表  3  基本事件的关键重要度和模糊重要度

    Table  3.   Key importance and fuzzy importance of the basic event

    基本事件 关键重要度 模糊重要度 后验概率
    x1 0.000 49 0.009 67 0.050 56
    x2 0.000 18 0.009 37 0.01921
    x3 0.001 15 0.010 30 0.111 22
    x4 0.000 61 0.009 79 0.062 69
    x5 0.002 10 0.008 58 0.19367
    x6 0.005 09 0.014 10 0.360 97
    x7 0.005 23 0.014 21 0.368 05
    x8 0.003 89 0.012 92 0.301 31
    x9 0.000 78 0.008 26 0.082 29
    x10 0.000 79 0.010 06 0.078 87
    x11 0.001 15 0.010 40 0.110 21
    x12 0.000 46 0.009 73 0.047 52
    x13 0.000 86 0.009 92 0.086 96
    x14 0.001 56 0.010 62 0.146 61
    x15 0.004 63 0.013 62 0.339 73
    x16 0.004 49 0.013 51 0.332 66
    x17 0.001 08 0.010 16 0.106 17
    x18 0.004 64 0.013 65 0.339 74
    x19 0.002 38 0.008 69 0.209 29
    x20 0.000 81 0.008 19 0.092 82
    x21 0.000 21 0.007 80 0.026 24
    x22 0.000 38 0.007 95 0.042 93
    x23 0.001 18 0.010 44 0.113 25
    x24 0.000 52 0.009 79 0.053 59
    下载: 导出CSV

    表  4  基本事件的关键重要度、模糊重要度、后验概率排序

    Table  4.   Critical importance, fuzzy importance, and posterior probability ranking of basic events

    排序 关键重要度 模糊重要度 后验概率
    1 x7 x7 x7
    2 x6 x6 x6
    3 x18 x18 x18
    4 x15 x15 x15
    5 x16 x16 x16
    6 x8 x8 x8
    7 x19 x14 x19
    8 x5 x23 x5
    9 x14 x11 x14
    10 x23 x3 x23
    11 x11 x17 x3
    12 x3 x10 x11
    13 x17 x13 x17
    14 x13 x4 x20
    15 x20 x24 x13
    16 x10 x12 x9
    17 x9 x1 x10
    18 x4 x2 x4
    19 x24 x19 x24
    20 x1 x5 x1
    21 x12 x9 x12
    22 x22 x20 x22
    23 x21 x22 x21
    24 x2 x21 x2
    下载: 导出CSV
  • [1] 孟祥海. 道路交通安全技术与实践案例[M]. 北京: 人民交通出版社, 2017.

    MENG Xianghai. Road traffic safety technology and practice cases[M]. Beijing: People's Communications Press, 2017. (in Chinese)
    [2] 许得杰, 钱勇生, 王敏, 等. 甘肃省重特大道路交通事故特征分析[J]. 中国公共安全(学术版), 2011(4): 100-103. doi: 10.3969/j.issn.1672-2396.2011.04.026

    XU Dejie, QIAN Yongsheng, WANG Min, et al. Analysis of characteristics of major road traffic accidents in Gansu province[J]. China Public Safety (Academic Edition), 2011(4): 100-103. (in Chinese) doi: 10.3969/j.issn.1672-2396.2011.04.026
    [3] 袁泉, 李一兵, 陈康. 引发重大交通事故的显著因素特点分析及安全对策[J]. 中国司法鉴定, 2015(5): 34-40. doi: 10.3969/j.issn.1671-2072.2015.05.006

    YUAN Quan, LI Yibing, CHEN Kang. Analysis of the characteristics of the significant factors leading to major traffic accidents and safety countermeasures[J]. China Forensic Expertise, 2015(5): 34-40. (in Chinese) doi: 10.3969/j.issn.1671-2072.2015.05.006
    [4] XU Chengcheng, BAO Jie, WANG Chen, et al. Association rule analysis of factors contributing to extraordinarily severe traffic crashes in China[J]. Journal of Safety Research, 2018(67): 65-75. http://www.onacademic.com/detail/journal_1000040875882610_2077.html
    [5] ZENG Qiang, GU Weihua, ZHANG Xuan, et al. Analyzing freeway crash severity using a Bayesian spatial generalized ordered logit model with conditional autoregressive priors[J]. Accident Analysis & Prevention, 2019(127): 87-95. http://www.onacademic.com/detail/journal_1000041580367699_c5b4.html
    [6] XU Chengcheng, BAO Jie, LIU Pan, et al. Investigation of contributing factors to extremely severe traffic crashes using survival theory[J]. International Journal of Injury Control and Safety Promotion, 2018, 25(2): 141-153. doi: 10.1080/17457300.2017.1363784
    [7] 由冰玉, 廉福绵, 孟祥海. 基于故障树贝叶斯网的山区高速公路事故成因分析[J]. 交通信息与安全, 2019, 37(4): 44-51. doi: 10.3963/j.issn.1674-4861.2019.04.006

    YOU Bingyu, LIAN Fumian, MENG Xianghai. Cause analysis of mountain expressway accidents based on fault tree Bayesian networks[J]. Journal of Transport Information and Safety, 2019, 37(4): 44-51. (in Chinese) doi: 10.3963/j.issn.1674-4861.2019.04.006
    [8] 柳昕汝. 山区高速公路伤亡事故故障树及贝叶斯网络模型[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    LIU Xinru. Fault tree and Bayesian network model of casualty accidents on mountain expressway[D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese)
    [9] 杜秀丽. 重特大道路交通事故致因研究[D]. 上海: 华东师范大学, 2016.

    DU Xiuli. Research on the causes of major road traffic accidents[D]. Shanghai: East China Normal University, 2016. (in Chinese)
    [10] 刘勇, 罗德林, 石翠, 等. 基于T-S模糊故障树的多态导航系统性能可靠性[J]. 北京航空航天大学学报, 2021, 47(2): 240-246. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK202102007.htm

    LIU Yong, LUO Delin, SHI Cui, et al. Performance reliability of multi-state navigation system based on T-S fuzzy fault tree[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 240-246. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK202102007.htm
    [11] 罗彦斌, 陈建勋, 王梦恕. 基于T-S模糊故障树理论的公路隧道冻害分析方法[J]. 北京交通大学学报, 2012, 36(4): 55-60. doi: 10.3969/j.issn.1673-0291.2012.04.011

    LUO Yanbin, CHEN Jianxun, WANG Mengshu. Highway tunnel freezing damage analysis method based on T-S fuzzy fault tree theory[J]. Journal of Beijing Jiaotong University, 2012, 36(4): 55-60. (in Chinese) doi: 10.3969/j.issn.1673-0291.2012.04.011
    [12] 付大伟. 基于贝叶斯网络汽车起重机液压系统可靠性分析[D]. 太原: 太原科技大学, 2016.

    FU Dawei. Reliability analysis of hydraulic system of truck crane based on Bayesian network[D]. Taiyuan: Taiyuan University of Science and Technology, 2016. (in Chinese)
    [13] KHAKZAD N, KHAN F, AMYOTTE P. Safety analysis in process facilites: Comparison of fault tree and Bayesian network approaches[J]. Reliability Engineering and System Safety, 2011, 96(8): 925-932. doi: 10.1016/j.ress.2011.03.012
    [14] WILSON A G, HUZURBAZAR A V. Bayesian networks for multilevel system reliability[J]. Reliability Engineering and System Safety, 2007, 92(10): 1413-1420. doi: 10.1016/j.ress.2006.09.003
    [15] 周忠宝, 马超群, 周经伦. 贝叶斯网络在多态系统可靠性分析中的应用[J]. 哈尔滨工业大学学报, 2009, 41(6): 232-235. doi: 10.3321/j.issn:0367-6234.2009.06.054

    ZHOU Zhongbao, MA Chaoqun, ZHOU Jinglun. The application of Bayesian networks in the reliability analysis of polymorphic systems[J]. Journal of Harbin Institute of Technology, 2009, 41(6): 232-235. (in Chinese) doi: 10.3321/j.issn:0367-6234.2009.06.054
    [16] 张荧驿. 基于T-S重要度和贝叶斯网络的多态液压系统可靠性分析[D]. 秦皇岛: 燕山大学, 2011.

    ZHANG Yingyi. Reliability analysis of multi-state hydraulic system based on T-S importance and Bayesian network[D]. Qinhuangdao: Yanshan University, 2011. (in Chinese)
    [17] 陈东宁, 姚成玉, 党振. 基于T-S模糊故障树和贝叶斯网络的多态液压系统可靠性分析[J]. 中国机械工程, 2013, 24(7): 899-905. doi: 10.3969/j.issn.1004-132X.2013.07.011

    CHEN Dongning, YAO Chengyu, DANG Zhen. Reliability analysis of multi-state hydraulic system based on T-S fuzzy fault tree and Bayesian network[J]. China Mechanical Engineering, 2013, 24(7): 899-905. (in Chinese) doi: 10.3969/j.issn.1004-132X.2013.07.011
    [18] 陈舞, 王浩, 张国华, 等. 基于T-S模糊故障树和贝叶斯网络的隧道坍塌易发性评价[J]. 上海交通大学学报, 2020, 54(8): 820-830. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT202008009.htm

    CHEN Wu, WANG Hao, ZHANG Guohua, et al. Evaluation of tunnel collapse susceptibility based on T-S fuzzy fault tree and Bayesian network[J]. Journal of Shanghai Jiaotong University, 2020, 54(8): 820-830. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT202008009.htm
    [19] SUN Honghua, CHEN Hongxia, LI Chunwei. Reliability modeling and analysis of complex multi-state systems based on weighted triangular fuzzy numbers T-S fault tree[J]. International Journal of Performability Engineering, 2019, 15(6): 1662-1671. doi: 10.23940/ijpe.19.06.p17.16621671
    [20] 《中国公路》编辑部. 我国道路交通事故主要成因和特点分析[J]. 中国公路, 2018(6): 26-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GLZG201806017.htm

    China Highway Editorial Department. Analysis of the main causes and characteristics of road traffic accidents in my country[J]. China Highway, 2018(6): 26-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLZG201806017.htm
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  1493
  • HTML全文浏览量:  519
  • PDF下载量:  205
  • 被引次数: 0
出版历程

目录

    /

    返回文章
    返回