A Speed Guidance Method at Signalized Intersections Based on Vehicle Infrastructure Cooperation
-
摘要: 针对现有的车速引导模型存在未综合考虑车辆跟驰行为、引导场景划分较粗略等问题,研究了4种基于车路协同环境下实时优化各车的车速引导模型。对车辆进行所属车辆列队划分,考虑车速引导影响对FVD跟驰模型进行改进。以车辆列队为引导单元,将车辆可能面临的交通状况细分为8种引导场景,以引导车辆不停车或少停车通过交叉口为目标,直接优化车辆加/减速度,建立车辆列队后车根据改进的跟驰模型计算目标跟驰加/减速度,并与头车组成列队以同一目标车速通过交叉口停车线的4种车速引导模型。以南昌市海棠北路/枫林西大街交叉口为例进行仿真验证,结果表明,所提出的车速引导模型能使车辆行程时间减少18.9%,最大排队长度减少58.8%,延误减少60.8%,燃油消耗减少36.4%,且适用于不同交通饱和状态,对提高信号交叉口通行效率和减少车辆燃油消耗有显著效果。Abstract: The existing speed guidance models for vehicles are not comprehensively considering the car-following behaviors and the roughdivision of guidance scenes. This paper studies four speed guidance models based on real-time optimization of eachvehicle in vehicle infrastructure cooperation. The vehicles are divided into queues, and the FVD car-following model is improved considering the influences of speed guidance. The vehicle platoon is used as the guidance unit, and the traffic conditions are subdivided into eight guidance scenarios. Withthe goals of optimizing the operating efficiency of the intersection without stopping or withless stopping, four vehicle speed guidance models are established to optimize vehicle acceleration/deceleration by calculating the target acceleration/deceleration based on the improved car-following model, that the following vehicles can cross the intersection stop line in a platoon at the same target speed withthe leading vehicle. The intersection between Haitang NorthRoad and Fenglin West Street in Nanchang is taken as a case study for verification. The results show that the proposed model can reduce vehicle travel time by 18.9%, maximum queue lengthby 58.8%, delay by 60.8%, and fuel consumption by 36.4%. It is suitable for different traffic saturation conditions, significantly improving the traffic at signalized intersections and reducing vehicle fuel consumption.
-
表 1 拟合系数取值
Table 1. The values of the regression
ki, je 取值 ki, je 取值 k0, 0e -0.679 439 k1, 2e -0.000 020 535 k0, 1e 0.135 273 k1, 3e 5.540 928 5x10-8 k0, 2e 0.015 946 k2, 1e 0.000 083 329 k0, 3e -0.001 189 k2, 2e 0.000 000 937 k1, 0e 0.029 665 k2, 3e -2.479 644x10-8 k2, 0e -0.000 276 k3, 1e -0.000 061 321 k3, 0e 0.148 7x10-6 k3, 2e 0.000 000 304 k1, 1e 0.004 808 k3, 3e -4.467 234x10-9 表 2 仿真及模型计算主要参数设置
Table 2. Main parameter settings of simulation and model calculation
参数 取值 参数 取值 速度引导区长度Lg/m 260 舒适加速度a/(m/s2) 2 车辆编队区长度Lp/m 100 舒适减速度d/(m/s2) 1 最大速度Vmax/(m/s) 17 标准车头间距hd/m 15 最小速度Vmin(m/s) 2 标准车头时距ht/s 2 最大加速度amax/(m/s2) 2.5 反应时间td/s 1.5 最大减速度dmax(m/s2) -2.5 仿真时长/s 3 600 表 3 交叉口现状信号配时方案
Table 3. Status signal timing plan at intersection
第一相位 第二相位 第三相位 第四相位 东西直行 东西左转 北直左 南直左 绿灯时长/s 38 18 28 28 周期/s 121 表 4 交叉口现状流量
Table 4. Status fiow at intersection
pcu/h 交叉口 东进口 西进口 南进口 北进口 左 直 右 左 直 右 左 直 右 左 直 右 流量 188 374 190 154 344 140 129 244 112 117 271 106 合计 752 638 485 494 表 5 车队头车识别结果(部分)
Table 5. Recognition results of the leader of the fleet (partial)
序号 头车到达速度引导区时刻/s 头车ID 序号 头车到达速度引导区时刻/s 头车ID 1 36 13 11 202 143 2 49 22 12 212 155 3 78 49 13 216 156 4 93 58 14 224 171 5 107 70 15 276 215 6 122 77 16 287 218 7 125 79 17 309 233 8 147 96 18 329 255 9 166 112 19 348 272 10 194 135 20 353 279 表 6 车辆行程时间仿真结果
Table 6. Vehicle travel time simulation results
仿真时间/s 行程时间/s 对比/% 无速度引导 本文模型 300 110.8 86.3 -22.11 600 106.4 84.5 -20.58 900 119 90.1 -24.29 1 200 113.4 95.5 -15.78 1 500 113.5 88.4 -22.11 1 800 102.4 99.3 -3.03 2 100 112.5 99.5 -11.56 2 400 101.4 77.2 -23.87 2 700 117 100.1 -14.44 3 000 119.3 95.8 -19.70 3 300 124.2 91.5 -26.33 3 600 95.6 73.3 -23.33 平均 111.3 90.1 -18.93 表 7 不同饱和状态下运行指标结果对比
Table 7. Comparison of operating index results underdifferent saturation conditions
饱和度 平均行程时间/s 平均延误/s 平均停车次数 无引导 本文模型 无引导 本文模型 无引导 本文模型 0.2 111.3 90.1 39.1 15.2 0.9 0.4 0.4 114.3 97.4 43.1 25.3 1.2 0.8 0.6 246.5 197.7 173.5 137.1 9.6 3.3 0.8 305.7 290.5 251.0 215.0 16.6 4.9 -
[1] CABAN J, VRÁBE J, ŠARKAN B, et al. About eco-driving, genesis, challenges and benefits, application possibilities[J]. Transportation ResearchProcedia, 2019(40): 1281-1288. http://www.sciencedirect.com/science/article/pii/S2352146519303461 [2] MINTSIS E, VLAHOGIANNI E I, MITSAKIS E. Dynamic eco-driving near ssignalized intersections: Systematic review and future researchdirections[J]. Journal of Transportation Engineering Part A: Systems, 2020, 146(4): 1-15. [3] 安实, 姚焓东, 姜慧夫, 等. 信号交叉口绿色驾驶车速控制方法[J]. 交通运输系统工程与信息, 2015, 15(5): 53-59. doi: 10.3969/j.issn.1009-6744.2015.05.008AN Shi, YAO Handong, JIANG Huifu, et al. A green driving speed control method at signal intersection[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(5): 53-59. (in Chinese) doi: 10.3969/j.issn.1009-6744.2015.05.008 [4] 龙科军, 高志波, 吴伟, 等. 城市道路干线信号协调控制与车速引导集成优化[J]. 长安大学学报(自然科学版), 2018, 38 (2): 94-102. doi: 10.3969/j.issn.1671-8879.2018.02.012LONG Kejun, GAO Zhibo, WU Wei, et al. Integrated optimization for urban arterial traffic signal coordination and vehicle active speed guidance[J]. Journal of Chang'an University(Natural Science Edition), 2018, 38(2): 94-102. (in Chinese) doi: 10.3969/j.issn.1671-8879.2018.02.012 [5] 刘欢, 杨雷, 邵社刚, 等. 车路协同环境下信号交叉口速度引导策略[J]. 重庆交通大学学报(自然科学版), 2019, 38(12): 8-17. doi: 10.3969/j.issn.1674-0696.2019.12.02LIU Huan, YANG Lei, SHAO Shegang, et al. Speed guidance strategies at signalized intersections in a vehicle infrastructure cooperative environment[J]. Journal of Chongqing Jiaotong University(Natural Science Edition), 2019, 38(12): 8-17. (in Chinese) doi: 10.3969/j.issn.1674-0696.2019.12.02 [6] 鹿应荣, 许晓彤, 丁川, 等. 车联网环境下信号交叉口车速控制策略[J]. 交通运输系统工程与信息, 2018, 18(1): 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201801009.htmLU Yingrong, XU Xiaotong, DING Chuan, et al. A speed control strategy at signalized intersection under connected vehicle environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(1): 50-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201801009.htm [7] 鹿应荣, 许晓彤, 丁川, 等. 连续信号交叉口网联自动驾驶车速控制[J]. 北京航空航天大学学报, 2018, 44(11): 2257-2266. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201811002.htmLU Yingrong, XU Xiaotong, DING Chuan, et al. Connected autonomous vehicle speed control at successive signalized intersections[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11): 2257-2266. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201811002.htm [8] 雷朝阳, 高建平, 屈俊凯, 等. 考虑信号灯状态的经济车速规划[J]. 科学技术与工程, 2020, 20(18): 7484-7492. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202018050.htmLEI Chaoyang, GAO Jianping. QU Junkai, et al. Economic speed planning withconsideration the state of traffic lights[J]. Journal of Science Technology and Engineering, 2020, 20(18): 7484-7492. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202018050.htm [9] 荆彬彬, 卢凯, 鄢小文, 等. 车路协同下基于速度引导的双周期干道绿波协调控制方法[J]. 华南理工大学学报(自然科学版), 2016, 44(8): 147-154. doi: 10.3969/j.issn.1000-565X.2016.08.021JING Binbin, LU Kai, YAN Xiaowen, et al. Double-cycle arterial green wave coordination control method based on speed guidance in vehicle infrastructure integration[J]. Journal of SouthChina University of Technology(Natural Science Edition), 2016, 44(8): 147-154. (in Chinese) doi: 10.3969/j.issn.1000-565X.2016.08.021 [10] 孟竹, 邱志军. 节能导向的信号交叉口生态驾驶策略研究[J]. 交通信息与安全, 2018, 36(2): 76-84+92. http://www.jtxa.net/tiasn/paper/editpaper.do?flag=abstract&PAPERID=2017-00420MENG Zhu, QIU Zhijun. A study of eco-driving strategy at signalized intersections[J]. Journal of Transport Information and Safety, 2018, 36(2): 76-84+92. (in Chinese) http://www.jtxa.net/tiasn/paper/editpaper.do?flag=abstract&PAPERID=2017-00420 [11] TANG T Q, YI Z Y, ZHANG J, et al. A speed guidance strategy for multiple signalized intersections based on car-following model[J]. Journal of Physica A: Statistical Mechanics and its Applications, 2016, 457: 316-321. doi: 10.1016/j.physa.2016.03.113 [12] 崔洪军, 朱敏清, 邢江柯, 等. 信号交叉口车路协同诱导策略下ACC车辆控制模式研究[J]. 公路交通科技, 2019, 36(6): 86-93. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201906012.htmCUI Hongjun, ZHU Minqing, XING Jiangke, et al. Study on ACC vehicle control mode under cooperative vehicle infrastructure guidance strategy for signalized intersection[J]. Journal of Highway and Transportation Researchand Development, 2019, 36(6): 86-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201906012.htm [13] LIU S, ZHANG W T, WU X J, et al. A simulation system and speed guidance algorithms for intersection traffic control using connected vehicle technology[J]. Tsinghua Science and Technology, 2019, 24(2): 160-170. doi: 10.26599/TST.2018.9010073 [14] CHEN H, RAKHA H A, LOULIZI A, et al. Development and preliminary field testing of an in-vehicle eco-speed control system in the vicinity of signalized intersections[J]. Journal of IFAC-PapersOnLine, 2016, 49(3): 249-254. doi: 10.1016/j.ifacol.2016.07.042 [15] HE X Z, LIU H X, LIU X B. Optimal vehicle speed trajectory on a signalized arterial withconsideration of queue[J]. Journal of Transportation ResearchPart C: Emerging Technologies, 2015(61): 106-120. http://www.sciencedirect.com/science/article/pii/S0968090X15003800 [16] STEBBINS S, HICKMAN M, KIM J, et al. Characterising green light optimal speed advisory trajectories for platoon-based optimisation[J]. Journal of Transportation ResearchPart C: Emerging Technologies, 2017(82): 43-62. http://www.sciencedirect.com/science/article/pii/S0968090X17301675 [17] CHEN W Q, LIU Y, YANG X G, et al. Platoon-based speed control algorithm for eco-driving at signalized intersection[J]. Journal of the Transportation ResearchBoard, 2015(2489): 29-38. http://www.researchgate.net/publication/295255073_Platoon-Based_Speed_Control_Algorithm_for_Ecodriving_at_Signalized_Intersection [18] ZHAO J, LI P. An extended car-following model withconsideration of speed guidance at intersections[J]. Journal of Physica A: Statistical Mechanics and its Applications, 2016(461): 1-8. [19] AHN K, RAKHA H, ASCE M, et al. Estimating vehicle fuel consumption and emissions based on instantaneous speed and acceleration levels[J]. Journal of Transportation Engineering, 2002, 128(2): 182-190. doi: 10.1061/(ASCE)0733-947X(2002)128:2(182)