A Review on Optimization of Unmanned Ship Path Based on Collision Avoidance Rules
-
摘要: 在人工智能与大数据背景下, 自动驾驶船舶因其安全、高效的优势吸引了国内外学者的广泛关注。但其避碰相关法律条例与避碰路径规划发展并不均衡。自动驾驶船舶概念在规范条例中仍十分模糊, 传统的路径优化与算法存在一定的偏差, 只局限于全局规划或局部规划无法有效的保障船舶行驶安全性。基于避碰规则梳理了自动驾驶船舶的相关规范, 分析了最新的自动驾驶船舶路径优化研究成果, 阐述了当下自动驾驶船舶路径规划的模型, 包括智能算法.规划目标与约束条件等。针对当下仍存在的自动驾驶船舶避碰问题, 应从定义、监管、责任划分等方面完善自动驾驶船舶法律法规体系, 改良传统避碰路径规划算法容易陷入局部最优解﹑求解过程缓慢等缺陷, 展望了自动驾驶船舶的进一步发展趋势。Abstract: In the era of artificial intelligence and big data, autonomous ships have attracted extensive attention from scholars at home and abroad due to their safety and efficiency. However, the development of relevant laws and regulations and collision avoidance path planning is imbalanced. The concept of traditional path optimization and algorithm has certain deviation, which is limited to global or local planning not guaranteeing the safety of a ship running. Based on the collision avoidance rules, the paper sorts out the relevant specifications of autonomous piloted ships and analyzes the latest research results of path optimization of autonomous piloted ships. Also, the current model of path planning of autonomous piloted ships is elaborated, including intelligent algorithms, planning objectives, and constraints. Given the existing problems of collision avoidance of autonomous piloted ships, the legal and regulatory system of autonomous piloted ships should be improved from the aspects of definition, supervision, and division of responsibilities. The further development trend of autonomous piloted ships is predicted by improving the traditional collision avoidance path planning algorithm easy to fall into the defects of the local optimal solution and slow solving process.
-
Key words:
- unmanned ship /
- collision avoidance rules /
- path optimization /
- algorithm
-
[1] 王一斐. 自动驾驶船舶法律问题研究[D]. 北京: 中国政法大学, 2018.WANG Yifei. Unmanned ship legal issues research[D]. Beijing: China University of Political Science and Law, 2018. (in Chinese) [2] VAN HOOYDONK E. Towards a worldwide restatement of the general principles of maritime law[J]. Law and Political Science, 2014, 20(3): 170-182. http://www.researchgate.net/publication/291801308_Towards_a_worldwide_restatement_of_the_general_principles_of_maritime_law [3] VEAL R, TSIMPLIS M. The integration of unmanned ships into the lexmaritima[J]. Lloyd's Maritime and Commercial Law Quarterly, 2017(5): 303-335. [4] McLAUGHLIN Rob. Unmanned naval vehicles at sea: USVs, UUVs, and the adequacy of the law[J]. Journal of Law Information & Science, 2011(21): 100-115. http://www.researchgate.net/publication/272777341_Unmanned_Naval_Vehicles_at_Sea_USVs_UUVs_and_the_Adequacy_of_the_Law [5] TASIKAS V. Unmanned aerial vehicles and the doctrine of hot pursuit: A new era of coast guard maritime law enforcement operations[J]. Tulane Maritime Law Journal, 2004(29): 59-80. http://heinonlinebackup.com/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/tulmar29§ion=9 [6] FRASER K C. Ship: 5, 000 years of maritime adventure[J]. Reference Reviews, 2011, 25(3): 43. doi: 10.1108/09504121111119040 [7] VEAL R, TSIMPLIS M, SERDY A. The legal status and operation of unmanned maritime vehicles[J]. Ocean Development & International Law. 2019, 50(1): 23-48. [8] 司玉琢. 侵权法的发展对船舶碰撞法律制度的影响[J]. 中国海商法研究, 2012(1): 19-27+94. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHS201201005.htmSI Yuzhuo. Development of the tort law to the influence of the legal system of collision[J]. Journal of China Maritime Law Research, 2012(1): 19-27+94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHS201201005.htm [9] 司玉琢. 从因果关系要件解读船舶碰撞致油污损害的请求权竞合[J]. 中国海商法研究, 2008, 19(1): 1-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHS200800002.htmSI Yuzhuo. Interpretation from the causal relationship between elements of collision of oil pollution damage caused by a usual[J]. Journal of China Maritime Law Research, 2008, 19 (1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHS200800002.htm [10] 冷松明. 船舶碰撞事故处理中赔偿的归责[J]. 江苏船舶, 2016, 33(2): 43-44. doi: 10.3969/j.issn.1001-5388.2016.02.014LENG Songming. Imputation in processing of ship collision accident compensation[J]. Journal of Jiangsu Marine, 2016, 33 (2): 43-44. (in Chinese) doi: 10.3969/j.issn.1001-5388.2016.02.014 [11] 王欣, 初北平. 研发试验阶段的自动驾驶船舶舶所面临的法律障碍及应对[J]. 中国海商法研究, 2017, 28(3): 59-67. doi: 10.3969/j.issn.1003-7659.2017.03.007WANG Xin, CHU Beiping. Research and development of experimental unmanned ship legal obstacles faced by and respond to[J]. Journal of China Maritime Law Research, 2017, 28(3): 59-67. (in Chinese) doi: 10.3969/j.issn.1003-7659.2017.03.007 [12] 王国华, 孙誉清. 自动驾驶船舶碰撞相关的责任[J]. 上海海事大学学报, 2019, 40(2): 120-126.WANG Guohua, SUN Yuqing. Unmanned ship collision related responsibility[J]. Journal of Shanghai Maritime University, 2019, 40(2): 120-126. (in Chinese) [13] 吕方园, 马昕妍. 自动驾驶船舶舶碰撞法律责任规制研究[J]. 大连海事大学学报(社会科学版), 2019, 18(4): 1-6. doi: 10.3969/j.issn.1671-7031.2019.04.001LYU Fangyuan, MA Xiyan. None of collision liability regulation research[J]. Journal of Dalian Maritime University(Social Science Edition), 2019, 17(4): 1-6. (in Chinese) doi: 10.3969/j.issn.1671-7031.2019.04.001 [14] 谢博宇, 李茂青, 岳丽丽, 等. 无人机-智能车队协同路径实时规划研究[J]. 计算机工程与应用, 2020(6): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202020003.htmXIE Boyu, LI Maoqing, YUE Lili, et al. Unmanned aerial vehicle intelligent team collaborative real-time path planning research[J]. Computer Engineering and Application, 2020(6): 1-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202020003.htm [15] ZHOU Xiao, CHENG Liang, LI Weidong, et al. A comprehensive path planning framework for patrolling marine environment[J]. Applied Ocean Research, 2020, 100(5): 1-10. http://www.sciencedirect.com/science/article/pii/S0141118720300043 [16] YAN Xin ping, WANG Shuwu, MA Feng, et al. A novel path planning approach for smart cargo ships based on anisotropic fast marching[J]. Expert Systems with Applications, 2020, 159 (3): 1-16. http://www.sciencedirect.com/science/article/pii/S0957417420303821 [17] 张英婷. 多模式船舶分段物流运输最优路径规划模型[J]. 舰船科学技术, 2020, 42(8): 175-177. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX202008060.htmZHANG Yingting. Multi-mode subsection logistics optimal path planning model of the ship[J]. Ship Science and Technology, 2020, 42(8): 175-177. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX202008060.htm [18] 姜岩, 王琦, 龚建伟, 等. 无人驾驶车辆局部路径规划的时间一致性与鲁棒性研究[J]. 自动化学报, 2015, 41(3): 518-527. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201503007.htmJIANG Yan, WANG Qi, GONG Jianwei, et al. Research on temporal consistency and robustness in local planning of intelligent vehicles[J]. ACTA Automatica Sinica, 2015, 41(3): 518-527. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201503007.htm [19] 吴博, 文元桥, 吴贝, 等. 水面无人艇避碰方法回顾与展望[J]. 武汉理工大学学报(交通科学与工程版), 2016, 40 (3): 456-461. doi: 10.3963/j.issn.2095-3844.2016.03.013WU Bo, WEN Yuanqiao, WU Bei, et al. Retrospect and prospect water unmanned craft collision avoidance method[J]. Journal of Wuhan University of Technology(Transportation Science and Engineering Edition), 2016, 40(3): 456-461. (in Chinese) doi: 10.3963/j.issn.2095-3844.2016.03.013 [20] 刘利强, 汪相国, 范志超. 基于小生境粒子群优化的船舶多路径规划方法[J]. 计算机工程, 2013, 39(9): 227-232+236. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201309052.htmLIU Liqiang, WANG Xiangguo, FAN Zhichao. Based on niche particle swarm optimization of multiple path planning method of the ship[J]. Computer Engineering, 2013, 39(9): 227-232+236. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201309052.htm [21] 姚肖肖, 胡勤友, 杨春. 基于蚁群算法与海量AIS数据的船舶航线规划[J]. 交通信息与安全, 2019, 37(3): 79-85. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201903010.htmYAO Xiaoxiao, HU Qinyou, YANG Chun. Based on ant colony algorithm with massive amounts of AIS data of route planning of the ship[J]. Journal of Transport Information and Safety, 2019, 37(3): 79-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201903010.htm [22] 狄伟. 无人智能测量艇系统设计与关键技术研究[J]. 中国海事, 2019(7): 52-57. https://www.cnki.com.cn/Article/CJFDTOTAL-HSZG201907021.htmDI Wei. Unmanned intelligent measuring vessel system design and key technology research[J]. China Maritime Safety, 2019 (7): 52-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HSZG201907021.htm [23] 宋鑫, 朱宗良, 高银萍, 等. 动态阈值结合全局优化的船舶AIS轨迹在线压缩算法[J]. 计算机科学, 2019, 46(7): 333-338. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201907051.htmSONG Xin, ZHU Zongliang, GAO Yinping, et al. Dynamic threshold combined with global optimization compression algorithm for the AIS trajectory[J]. Journal of Computer Science, 2019, 46(7): 333-338. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201907051.htm [24] 谢朔, 初秀民, 柳晨光, 等. 船舶智能避碰研究综述及展望[J]. 交通信息与安全, 2016, 34(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201601002.htmXIE Shuo, CHU Xiumin, LIU Chenguang, et al. The ship intelligent collision avoidance research review and outlook[J]. Journal of Transport Information and Safety, 2016, 34(1): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201601002.htm [25] 应士君, 邹绪平, 刘卫, 等. 基于北斗二代系统的船用导航仪硬件设计及关键算法研究[J]. 科学技术与工程, 2012, 12 (9): 2237-2240. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201209059.htmYING Shijun, ZOU Xuping, LIU Wei, et al. Based on Beidou second generation system of marine navigation hardware design and the key algorithms[J]. Science Technology and Engineering, 2012, 12(9): 2237-2240. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201209059.htm [26] 尚明栋, 朱志宇, 周涛. 水面无人艇动态避碰策略研究[J]. 舰船科学技术, 2017, 39(17): 69-73. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201717014.htmSHANG Mingdong, ZHU Zhiyu, ZHOU Tao. Study on dynamic collision avoidance strategy of unmanned surface vehicles[J]. Ship Science and Technology, 2017, 39(17): 69-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201717014.htm [27] 薛敏, 徐海成, 王硕. 基于粒子群优化算法的无人艇路径规划[J]. 中国科技信息, 2018(24): 69-70. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJK201824031.htmXUE Min, XU Haicheng, WANG Shuo. Path planning of un⁃manned boat based on particle swarm optimization algorithm[J]. China Science and Technology Information, 2018 (24): 69-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XXJK201824031.htm [28] 陈华, 孙启元. 基于TS算法的直线往复2-RGV系统调度研究[J]. 工业工程与管理, 2015, 20(5): 80-88. https://www.cnki.com.cn/Article/CJFDTOTAL-GYGC201505011.htmCHEN Hua, SUN Qiyuan. Research on scheduling of linear reciprocating 2-RGV system based on TS algorithm[J]. Industrial Engineering and Management, 2015, 20(5): 80-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYGC201505011.htm [29] 刘建. 水面无人艇路径规划技术的研究[D]. 镇江: 江苏科技大学, 2014.LIU Jian. Research on path planning technology of unmanned surface vehicles[D]. Zhenjiang: Jiangsu University of Science and Technology, 2014. (in Chinese) [30] 唐平鹏, 刘德丽, 洪昌建, 等. 水面无人艇全局航迹多目标规划算法[J]. 华中科技大学学报(自然科学版), 2015, 43(增刊1): 290-293. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG2015S1069.htmTANG Pingpeng, LIU Deli, HONG Changjian, et al. Multi-objective planning algorithm for global track of unmanned surface vehicle[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43(S1): 290-293. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG2015S1069.htm [31] 孙晓界. 无人水面艇实时路径规划系统研究[D]. 大连: 大连海事大学, 2016.SUN Xiaojie. Research on real-time path planning system of unmanned surface boat[D]. Dalian: Dalian Maritime University, 2016. (in Chinese) [32] 陈晓, 戴冉, 陈昌源. 基于Maklink图和蚁群算法的航线规划[J]. 中国航海, 2017, 40(3): 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201703003.htmCHEN Xiao, DA Ran, CHEN Changyuan. Route planning based on Maklink graph and ant colony algorithm[J]. Navigation of China, 2017, 40(3): 9-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201703003.htm [33] 杨怀. USV路径规划算法的研究[D]. 大连: 大连海事大学, 2016.YANG Huai. Research on path planning algorithm of USV[D]. Dalian: Dalian Maritime University, 2016. (in Chinese) [34] 孙立成. 船舶避碰决策数学模型的研究[D]. 大连: 大连海事大学, 2000.SUN Licheng. Research on mathematical model of ship collision avoidance decision[D]. Dalian: Dalian Maritime University, 2000. (in Chinese) [35] 郑中义, 吴兆麟. 船舶最佳转向避碰幅度决策模型[J]. 大连海事大学学报, 2000(4): 5-8, 13. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS200004001.htmZHENG Zhongyi, WU Zhaolin. Decision model of ship's optimal steering collision avoidance amplitude[J]. Journal of Dalian Maritime University, 2000(4): 5+8, 13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS200004001.htm [36] 魏新勇, 黄烨笙, 洪晓斌. 基于VFH的水面无人艇局部避障方法[J]. 中国测试, 2018, 44(12): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS201812007.htmWEI Xinyong, HUANG Huasheng, HONG Xiaobin. Local obstacle avoidance method for surface unmanned boat based on VFH[J]. China Measurement & Testing Technology, 2018, 44 (12): 39-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS201812007.htm [37] 张汝波, 李建军, 杨玉. 基于改进蚁群算法的AUV航路避障任务规划[J]. 华中科技大学学报(自然科学版), 2015, 43 (增刊1): 428-430. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG2015S1102.htmZHANG Rubo, LI Jianjun, YANG Yu. Obstacle avoidance task planning of AUV route based on improved ant colony algorithm[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43(S1): 428-430. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG2015S1102.htm [38] 王程博, 张新宇, 邹志强, 等. 基于Q-Learning的无人驾驶船舶路径规划[J]. 船海工程, 2018, 47(5): 168-171. https://www.cnki.com.cn/Article/CJFDTOTAL-WHZC201805038.htmWANG Chengbo, ZHANG Xinyu, ZOU Zhiqiang, et al. Path planning of unmanned ship based on Q-Learning[J]. Ship & Ocean Engineering, 2018, 47(5): 168-171. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHZC201805038.htm [39] 王哲. 无人艇自动避碰策略的研究[D]. 大连: 大连海事大学, 2013.WANG Zhe. Research on automatic collision avoidance strategy of unmanned boat[D]. Dalian: Dalian Maritime University, 2013. (in Chinese) [40] 杨柏丞, 赵志垒. 基于改进模拟退火算法的多船会遇避碰决策[J]. 大连海事大学学报, 2018, 44(2): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201802004.htmYANG Bocheng, ZHAO Zhilei. Multi-ship collision avoidance decision based on improved simulated annealing algorithm[J]. Journal of Dalian Maritime University, 2018, 44(2): 22-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201802004.htm [41] 李建江, 陈玮, 李明, 等. 基于网格热度值的船舶规律路径提取算法[J]. 计算机研究与发展, 2018, 55(5): 908-919. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201805003.htmLI Jianjiang, CHEN Wei, LI Ming, et al. Algorithm of ship regular path extraction based on grid heat value[J]. Journal of Computer Research and Development, 2018, 55(5): 908-919. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201805003.htm [42] 孙耀东. 一种船舶航行路径的智能规划研究[D]. 大连: 大连海事大学, 2018.SUN Yaodong. Research on intelligent planning of ship navigation path[D]. Dalian: Dalian Maritime University, 2018. (in Chinese) [43] GAULT S, HAZLEWOOD S, TETTENBORN A, et al. Marsden on collisions at sea[M]. London: Sweet & Maxwell Ltd, 2016. [44] TSOU M C, HSUEH C K. The study of ship collision avoidance route planning by ant colony algorithm[J]. Journal of Marine Science and Technology, 2010, 18(5): 746-756.
点击查看大图
计量
- 文章访问数: 880
- HTML全文浏览量: 437
- PDF下载量: 66
- 被引次数: 0