留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

网联通信时延下的混合队列控制特性分析

许庆 王嘉伟 王建强 李克强 高博麟

许庆, 王嘉伟, 王建强, 李克强, 高博麟. 网联通信时延下的混合队列控制特性分析[J]. 交通信息与安全, 2021, 39(1): 128-136. doi: 10.3963/j.jssn.1674-4861.2021.01.015
引用本文: 许庆, 王嘉伟, 王建强, 李克强, 高博麟. 网联通信时延下的混合队列控制特性分析[J]. 交通信息与安全, 2021, 39(1): 128-136. doi: 10.3963/j.jssn.1674-4861.2021.01.015
XU Qing, WANG Jiawei, WANG Jianqiang, LI Keqiang, GAO Bolin. A Performance Analysis of Mixed Platoon Control under Communication Delay[J]. Journal of Transport Information and Safety, 2021, 39(1): 128-136. doi: 10.3963/j.jssn.1674-4861.2021.01.015
Citation: XU Qing, WANG Jiawei, WANG Jianqiang, LI Keqiang, GAO Bolin. A Performance Analysis of Mixed Platoon Control under Communication Delay[J]. Journal of Transport Information and Safety, 2021, 39(1): 128-136. doi: 10.3963/j.jssn.1674-4861.2021.01.015

网联通信时延下的混合队列控制特性分析

doi: 10.3963/j.jssn.1674-4861.2021.01.015
基金项目: 

国家自然科学基金面上基金项目 52072212

广东省重点领域研发计划项目 2019B090912001

详细信息
    作者简介:

    许庆(1984—),博士,助理研究员.研究方向:网联车辆控制、车辆动力学. Email: qingxu@tsinghua.edu.cn

    通讯作者:

    李克强(1963—),博士,教授.研究方向:系统动态设计与控制、智能网联云控系统. Email: likq@tsinghua.edu.cn

  • 中图分类号: U491

A Performance Analysis of Mixed Platoon Control under Communication Delay

  • 摘要: 针对CACC协同自适应巡航控制技术,探究其在车联网通信时延影响下,与驾驶员驾驶汽车共存而构成的混合队列系统的性能。从微观跟车行为角度,基于频域传递函数,推导通信时延下的CACC队列稳定最小跟车时距的理论表达式,并通过数值验证指出CACC队列稳定最小跟车时距随通信时延增大而增大的特性。从交通激波特性角度,针对无时延CACC、有时延CACC和时延过大而退化后的ACC自适应巡航3种情形,给定相同的跟车时距,进行不同渗透率下的大规模交通仿真实验,实验结果表明,在无时延和1 s时延这2种情形下,CACC在20%及以上的渗透率时均能显著降低交通扰动,削弱激波,性能差别不明显; 相比而言,退化后的ACC性能明显恶化。

     

  • 图  1  协同自适应巡航控制系统(CACC)

    Figure  1.  Cooperative adaptive cruise control(CACC)

    图  2  不同通信时延下的队列稳定最小跟车时距

    Figure  2.  Minimum time headway for string stability at different communication delays

    图  3  仿真场景布置示意图

    Figure  3.  Simulation scenario

    图  4  所有车辆均为驾驶员驾驶汽车下的车辆轨迹图

    Figure  4.  Vehicle trajectories when all the vehicles are human-driven

    图  5  通信时延 θ =0 s时CACC控制下的车辆轨迹数据图(以速度区分交通波)

    Figure  5.  Vehicle trajectories under CACC when θ =0 s(traffic wave is characterized by the velocity)

    图  6  通信时延θ =1 s时CACC控制下的车辆轨迹数据图(以速度区分交通波)

    Figure  6.  Vehicle trajectories under CACC when θ =1 s(traffic wave is characterized by the velocity)

    图  7  退化为ACC控制下的车辆轨迹数据图(以速度区分交通波)

    Figure  7.  Vehicle trajectories under ACC degraded from CACC(traffic wave is characterized by the velocity)

    图  8  通信时延θ =0 s时CACC控制下的车辆轨迹数据图(以加速度区分交通波)

    Figure  8.  Vehicle trajectories under CACC when θ =0 s(traffic wave is characterized by the acceleration)

    图  9  通信时延 θ =1 s时CACC控制下的车辆轨迹数据图(以加速度区分交通波)

    Figure  9.  Vehicle trajectories under CACC when θ =1 s(traffic wave is characterized by the acceleration)

    图  10  退化为ACC控制下的车辆轨迹数据图(以加速度区分交通波)

    Figure  10.  Vehicle trajectories under ACC degraded from CACC(traffic wave is characterized by the acceleration)

    表  1  反馈控制K(s) 的参数取值

    Table  1.   Parameter setup for the feedback K(s)

    第1组 第2组
    kp 0.40 0.90
    kd 1.20 2.70
    下载: 导出CSV

    表  2  头车运动轨迹

    Table  2.   Velocity profile of the leading vehicle

    时间/s 轨迹
    0≤ t < 30 头车以25 m/s的速度匀速行驶,跟随车辆达到稳定
    30≤ t < 33 头车以-5 m/s2的加速度进行紧急制动
    33≤ t < 38 头车保持10 m/s的速度匀速行驶
    38 ≤t < 53 头车以1 m/s2加速度恢复至25 m/s的速度
    53≤ t≤ 200 头车以25 m/s匀速行驶
    下载: 导出CSV

    表  3  交通仿真中的参数取值

    Table  3.   Parameter setup in traffic simulation

    参数 符号 数值
    驾驶员反应延迟/s τ 0.5
    自由加速度指数 δ 4.0
    车辆最大加速度/(m/s2) am 2.0
    车辆最大减速度/(m/s2) bm 5.0
    驾驶员舒适加速度/(m/s2) ac 1.4
    驾驶员舒适减速度/(m/s2) bc 2.0
    驾驶员期望速度/(m/s2) vd 25.0
    静止时的车距/m s0 0.0
    车辆动力学参数 η 0.1
    期望时距/s hd 1.2
    期望速度/(m/s) vd 25.0
    控制器P参数 kp 0.9
    控制器D参数 kd 2.7
    下载: 导出CSV
  • [1] TREIBER M, KESTING A. Traffic flow dynamics: data, models and simulation[M]. Berlin: Springer, 2013.
    [2] SUGIYAMA Y, FUKUI M, KIKUCHI M, et al. Traffic jams without bottlenecks-experimental evidence for the physical mechanism of the formation of a jam[J]. New Journal of Physics, 2008, 10(3): 033001. doi: 10.1088/1367-2630/10/3/033001
    [3] 李克强, 戴一凡, 李升波, 等. 智能网联汽车(ICV)技术的发展现状及趋势[J]. 汽车安全与节能学报, 2017, 8(1): 1-14. doi: 10.3969/j.issn.1674-8484.2017.01.001

    LI Keqiang, DAI Yifan, LI Shengbo, et al. State-of-the-art and technical trends of intelligent and connected vehicles[J]. Journal of Automotive Safety and Energy, 2017, 8(1): 1-14. (in Chinese) doi: 10.3969/j.issn.1674-8484.2017.01.001
    [4] LI S E, ZHENG Y, LI K, et al. Dynamical modeling and distributed control of connected and automated vehicles: challenges and opportunities[J]. IEEE Intelligent Transportation Systems Magazine, 2017, 9(3): 46-58. doi: 10.1109/MITS.2017.2709781
    [5] STERN R E, CUI S, Delle Monache M L, et al. Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments[J]. Transportation Research Part C: Emerging Technologies, 2018, 89: 205-221. doi: 10.1016/j.trc.2018.02.005
    [6] TALEBPOUR A, MAHMASSANI H S. Influence of connected and autonomous vehicles on traffic flow stability and throughput[J]. Transportation Research Part C: Emerging Technologies, 2016(71): 143-163. http://smartsearch.nstl.gov.cn/paper_detail.html?id=8f54faf4ca968a5b80ae02ed02373f6d
    [7] SCHAKEL W J, VAN AREM B, NETTEN B D. Effects of cooperative adaptive cruise control on traffic flow stability[C]. 13th International IEEE Conference on Intelligent Transportation Systems, Funchal, Portugal: IEEE, 2010.
    [8] GUÚRIAU M, BILLOT R, El FAOUZI N E, et al. How to assess the benefits of connected vehicles? A simulation framework for the design of cooperative traffic management strategies[J]. Transportation Research Part C: Emerging Technologies, 2016 (67): 266-279. http://smartsearch.nstl.gov.cn/paper_detail.html?id=4fb55e68eb689b922c495d007bc1e371
    [9] 秦严严, 王昊, 王炜, 等. 不同CACC渗透率条件下的混合交通流稳定性分析[J]. 交通运输系统工程与信息, 2017, 17(4): 63-69+104.

    QIN Yanyan, WANG Hao, WANG Wei, et al. Mixed traffic flow string stability analysis for different cacc penetration ranges[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(4): 63-69 + 104. (in Chinese)
    [10] SHLADOVER S, SU D, LU X Y. Impacts of cooperative adaptive cruise control on freeway traffic flow[J]. Transportation Research Record: Journal of the Transportation Research Board, 2012(2324): 63-70. http://www.researchgate.net/publication/266391703_Impacts_of_Cooperative_Adaptive_Cruise_Control_on_Freeway_Traffic_Flow_Impacts_of_Cooperative_Adaptive_Cruise_Control_on_Freeway_Traffic_Flow
    [11] ZHENG Y, WANG J, LI K. Smoothing traffic flow via control of autonomous vehicles[J]. IEEE Internet of Things Journal, 2020, 7(5): 3882-3896. doi: 10.1109/JIOT.2020.2966506
    [12] WANG J, ZHENG Y, XU Q, et al. Controllability analysis and optimal control of mixed traffic flow with human-driven and autonomous vehicles[J/OL]. (2020-06-29)[2021-01-01]. https://ieeexplore.ieee.org/abstract/document/9127876.
    [13] DEY K C, YAN L, WANG X, et al. A review of communication, driver characteristics, and controls aspects of cooperative adaptive cruise control(CACC)[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 17(2): 491-509. http://ieeexplore.ieee.org/document/7314936/references
    [14] 郑洋. 基于四元素构架的车辆队列动力学建模与分布式控制[D]. 北京: 清华大学, 2015.

    ZHENG Yang. Dynamic modeling and distributed control of vehicular platoon under the four-component framework[D]. Beijing: Tsinghua University, 2015. (in Chinese)
    [15] PLOEG J, SCHEEPERS B T M, VAN NUNEN E, et al. Design and experimental evaluation of cooperative adaptive cruise control[C]. 14th International IEEE Conference on Intelligent Transportation Systems, Washington, DC, USA: IEEE, 2011.
    [16] NAUS G J L, VUGTS R P A, PLOEG J, et al. String-stable CACC design and experimental validation: A frequency-domain approach[J]. IEEE Transactions on Vehicular Technology, 2010, 59(9): 4268-4279. doi: 10.1109/TVT.2010.2076320
    [17] ÖNCÜ S, PLOEG J, VAN DE WOUW N, et al. Cooperative adaptive cruise control: Network-aware analysis of string stability[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(4): 1527-1537. doi: 10.1109/TITS.2014.2302816
    [18] KESTING A, TREIBER M, HELBING D. Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity[J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2010, 368(1928): 4585-4605. doi: 10.1098/rsta.2010.0084
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  1053
  • HTML全文浏览量:  468
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-25
  • 刊出日期:  2021-02-28

目录

    /

    返回文章
    返回