Identification of Freeway Traffic State Based on Parameter Forecasting
-
摘要: 针对目前基于单截面检测数据的高速公路交通状态判别算法存在着判断阈值多,对拥挤样本依赖性强而拥挤样本采集困难等问题,提出了基于交通流预测的交通状态判别模型.预测过程中以车辆的平均占用时间作为预测的目标参数,利用神经网络建立预测模型,并通过相关系数法确定神经网络的输入层.在预测的基础上,以实测值与预测值之间的差值作为判别的依据,判别道路的交通状态.应用广深高速公路实测数据对判别模型的有效性进行检验,并与经典的McMaster检测算法做了对比,结果表明,所提出算法对拥挤样本依赖较少,判别精度高,鲁棒性高.
点击查看大图
计量
- 文章访问数: 323
- HTML全文浏览量: 64
- PDF下载量: 10
- 被引次数: 0