A Nonparametric Regression Method for Traffic Flow Forecast Based on R-tree
-
摘要: 非参数回归在交通流预测中已得到广泛应用,但实际使用中存在实时性差的缺陷.为提高非参数回归预测速度,提出了使用空间索引结构R树作为模式库的存储结构,并依据R树空间聚类的特点进行K近邻搜索,最后根据搜索到的近邻点估算未来的交通流量.实验结果表明R树结构下的K近邻搜索速度比线性结构下的搜索速度提高了59.6%,但预测精度下降了8.8%.而通过缩小K近邻搜索中的距离上限这一参数,可以提高预测精度.结果表明当2种结构下的距离上限相同且小于0.02时,R树结构下的预测精度平均高于线性结构下11.9%,且搜索速度也平均提高了30.8%.因此,该算法能够在满足预测精度的条件下有效地提高预测速度,为实时短时交通流预测系统提供了1种实现算法.
点击查看大图
计量
- 文章访问数: 295
- HTML全文浏览量: 78
- PDF下载量: 0
- 被引次数: 0