Volume 42 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
CHEN Ziang, CHEN Xin, ZENG Yutong, GUO Tangyi. Assessing Pavement Rougness Using Jitter Vector from In-vehicle Camera Videos[J]. Journal of Transport Information and Safety, 2024, 42(2): 105-114. doi: 10.3963/j.jssn.1674-4861.2024.02.011
Citation: CHEN Ziang, CHEN Xin, ZENG Yutong, GUO Tangyi. Assessing Pavement Rougness Using Jitter Vector from In-vehicle Camera Videos[J]. Journal of Transport Information and Safety, 2024, 42(2): 105-114. doi: 10.3963/j.jssn.1674-4861.2024.02.011

Assessing Pavement Rougness Using Jitter Vector from In-vehicle Camera Videos

doi: 10.3963/j.jssn.1674-4861.2024.02.011
  • Received Date: 2023-06-08
    Available Online: 2024-09-14
  • The process of assessing pavement smoothness is cumbersome, inefficient and time-consuming. To address these issues, a pavement smoothness assessment method based on in-vehicle video jitter vectors is proposed. This method enables preliminary and rapid screening of pavement conditions under normal scenarios. It uses driving videos collected by onboard devices as the assessment data. Preprocessing enhances the contrast of driving video images and reduces the effect of changes in the driving environment on the contrast of video images. The video images then undergo block-wise grayscale projection and similarity determination to remove significant deviations in jitter vectors and interference from moving objects. This extracts the main jitter vectors from the driving videos. The particle swarm optimization (PSO) algorithm improves the search pattern of the projection correlation curve. Using the grayscale projection curve correlation formula as the fitness function in the row (or column) direction enhances search efficiency of the algorithm. A genetic algorithm (GA) optimized K-means clustering algorithm is established to autonomously assess road smoothness at different vehicle speeds by combining vehicle speed and video jitter vectors. Experimental validation shows that the PSO-based grayscale projection algorithm detects smooth road surfaces in 0.148 s, improving efficiency by 91.41% compared to the original algorithm. For rough road surfaces, detection takes 0.123 s, improving efficiency by 87.58%, and consistently detects jitter vector values. The GA-K-means algorithm effectively reduces interference from initial cluster centers, avoiding premature conver-gence.

     

  • loading
  • [1]
    惠记庄, 张泽宇, 叶敏, 等. 公路建养装备数字孪生技术综述[J]. 交通运输工程学报, 2023, 23(4): 23-44.

    HUI J Z, ZHANG Z Y, YE M, et al. A review of digital twin technology for highway construction and maintenance equipment[J]. Journal of Transportation Engineering, 2023, 23(4): 23-44. (in Chinese)
    [2]
    何洪文, 孙逢春, 李梦林. 我国综合交通工程科技现状及未来发展[J]. 中国工程科学, 2023, 25(6): 202-211.

    HE H W, SUN F C, LI M L. Current status and future development of comprehensive transportation engineering science and technology in China[J]. China Engineering Science, 2023, 25(6): 202-211. (in Chinese)
    [3]
    KALOOP M R, El-BADAWY S M, HU J W, et al. International roughness index prediction for flexible pavements using novel machine learning techniques[J]. Engineering Applications of Artificial Intelligence, 2023, 122: 106007. doi: 10.1016/j.engappai.2023.106007
    [4]
    LIU J, LIU F, ZHENG C, et al. Improving asphalt mix design considering international roughness index of asphalt pavement predicted using autoencoders and machine learning[J]. Construction and Building Materials, 2022, 360: 129439. doi: 10.1016/j.conbuildmat.2022.129439
    [5]
    LIU C, WU D, LI Y, et al. Large-scale pavement roughness measurements with vehicle crowdsourced data using semi-supervised learning[J]. Transportation Research Part C: Emerging Technologies, 2021, 125: 103048. doi: 10.1016/j.trc.2021.103048
    [6]
    AUGUSTAUSKAS R, LIPNICKAS A. Improved pixel-level pavement-defect segmentation using a deep autoencoder[J]. Sensors, 2020, 20(9): 2557. doi: 10.3390/s20092557
    [7]
    张金喜, 王琳, 周同举, 等. 基于行车振动的路面平整性智能检测方法研究[J]. 中外公路, 2020, 40(1): 31-36.

    ZHANG J X, WANG L, ZHOU T J, et al. Study on Intelligent detection method of pavement roughness based on vibration of moving vehicles[J]. Journal of China & Foreign Highway, 2020, 40(1): 31-36. (in Chinese)
    [8]
    CERECEDA D, MEDEL-VERA C, ORTIZ M, et al. Roughness and condition prediction models for airfield pavements using digital image processing[J]. Automation in Construction, 2022, 139: 104325. doi: 10.1016/j.autcon.2022.104325
    [9]
    BASHAR M Z, TORRES-MACHI C. Deep learning for estimating pavement roughness using synthetic aperture radar data[J]. Automation in Construction, 2022, 142: 104504. doi: 10.1016/j.autcon.2022.104504
    [10]
    TIAN C, ZHENG M, ZUO W, et al. Multi-stage image denoising with the wavelet transform[J]. Pattern Recognition, 2023, 134: 109050. doi: 10.1016/j.patcog.2022.109050
    [11]
    李之红, 申天宇, 文琰杰, 等. 基于混合机器学习框架的网约车订单需求预测与异常点识别[J]. 交通信息与安全, 2023, 41(3): 157-165, 174.

    LI Z H, SHEN T Y, WENG Y J, et al. Order demand prediction and anomaly-point identification for online car-hailing orders based on hybrid machine learning framework[J]. Journal of Transport Information and Safety, 2023, 41(3): 157-165, 174. (in Chinese)
    [12]
    KREMER T, IRONS T, M LLER-PETKE M, et al. Review of acquisition and signal processing methods for electromagnetic noise reduction and retrieval of surface nuclear magnet-ic resonance parameters[J]. Surveys in Geophysics, 2022, 43(4): 999-1053. doi: 10.1007/s10712-022-09695-3
    [13]
    GUO J, SI Z, XIANG J. A compound fault diagnosis method of rolling bearing based on wavelet scattering transform and improved soft threshold denoising algorithm[J]. Measurement, 2022, 196: 111276. doi: 10.1016/j.measurement.2022.111276
    [14]
    张玺君, 袁占亭, 张红, 等. 交通轨迹大数据预处理方法研究[J]. 计算机工程, 2019, 45(6): 26-31.

    ZHANG X J, YUAN Z T, ZHANG H, et al. Research on preprocessing method for traffic trajectory big data[J]. Computer Engineering, 2019, 45(6): 26-31. (in Chinese)
    [15]
    GOLDBERG P W, KATZMAN M J. Lower bounds for the query complexity of equilibria in Lipschitz games[J]. Theoretical Computer Science, 2023, 962: 113931.
    [16]
    LI H, CAO Y, WAN Y, et al. An improved temporal phase unwrapping based on super-grayscale multi-frequency grating projection[J]. Optics and Lasers in Engineering, 2022, 153: 106990.
    [17]
    FENG Y, DANG Y, WANG J, et al. A novel grey projection incidence model for assessing the relationships between cardiovascular diseases and air pollutants[J]. ISA Transactions, 2023, 135: 398-409. .
    [18]
    党媛媛, 陈兆学. 基于灰度积分投影与霍夫圆变换算法的人眼瞳距自动检测[J]. 计算机系统应用, 2022, 31(7): 259-264.

    DANG Y Y, CHEN Z X. Automatic detection of human eye pupil distance based on gray integral projection and hough circle transform algorithm[J]. Computer Systems Application, 2022, 31(7): 259-264. (in Chinese)
    [19]
    胡建祥, 侯毅男. 基于多元灰度投影的无人艇电子稳像方法[J]. 弹箭与制导学报, 2021, 41(4): 65-68, 73.

    HU J X, HOU Y N. USV video stabilization algorithm based on multilayer gray projection[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2021, 41(4): 65-68, 73. (in Chinese)
    [20]
    胡常俊, 张著洪. 基于视频抖动的灰度投影稳像算法[J]. 贵州大学学报(自然科学版), 2019, 36(1): 82-86.

    HU C J, ZHANG Z H. Video jitter-based image stabilization algorithm for grayscale projection[J]. Journal of Guizhou University(Natural Sciences), 2019, 36(1): 82-86. (in Chinese)
    [21]
    高玮宁, 马善涛, 何勇军, 等. 图像灰度投影的聚焦窗口选择方法[J]. 哈尔滨理工大学学报, 2021, 26(5): 60-67.

    GAO W N, MA S T, HE Y J, et al. A focusing window selection based on gray-scale projection[J]. Journal of harbin university of science and technology, 2021, 26(5): 60-67. (in Chinese)
    [22]
    GUPTA G. Algorithm for image processing using improved median filter and comparison of mean, median and improved median filter[J]. International Journal of Soft Computing and Engineering(IJSCE), 2011, 1(5): 304-311.
    [23]
    常振廷, 肖智豪, 张文军, 等. 基于网格分类与纵横向注意力的城市道路车道线检测方法[J]. 交通信息与安全, 2023, 41(3): 92-102, 110

    CHANG Z T, XIAO Z H, ZHANG W J, et al. Lane line detection method for urban roads based on grid classification and vertical and horizontal attention[J]. Journal of Transport Information and Safety, 2023, 41(3): 92-102, 110. (in Chinese)
    [24]
    LI H, WANG J. Collaborative annealing power k-means ++ clustering[J]. Knowledge-Based Systems, 2022, 255: 109593.
    [25]
    KORDOS M, BLACHNIK M, SCHERER R. Fuzzy clustering decomposition of genetic algorithm-based instance selection for regression problems[J]. Information Sciences, 2022, 587: 23-40.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (116) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return