Volume 41 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
ZHAO Zhenxing, ZENG Wei, TANG Chenjia. A Short-term Traffic Flow Forecasting Model Considering Dynamic Spatio-temporal Relationship[J]. Journal of Transport Information and Safety, 2023, 41(4): 143-153. doi: 10.3963/j.jssn.1674-4861.2023.04.015
Citation: ZHAO Zhenxing, ZENG Wei, TANG Chenjia. A Short-term Traffic Flow Forecasting Model Considering Dynamic Spatio-temporal Relationship[J]. Journal of Transport Information and Safety, 2023, 41(4): 143-153. doi: 10.3963/j.jssn.1674-4861.2023.04.015

A Short-term Traffic Flow Forecasting Model Considering Dynamic Spatio-temporal Relationship

doi: 10.3963/j.jssn.1674-4861.2023.04.015
  • Received Date: 2023-02-10
    Available Online: 2023-11-23
  • A traffic flow prediction model based on dynamic spatio-temporal graph convolutional network (DySTGCN) is developed, to effectively extract the spatio-temporal features of traffic flows and improve the accuracy of traffic flow prediction. DySTGCN models not only Spatio-temporal information of traffic flow but also the influence of temporal information on spatial information. Meanwhile, a spatial structure based on temporal information, a time-varying spatial topology graph (TSG), is proposed and a deep neural network structure to efficiently calculate the TSG is designed. The structure extracts correlation features of traffic flow at different nodes and can reduce the noise through encoding and decoding. TSG reflects the real-time spatial feature of the traffic network, a stable spatial graph (SG) based on the spatial position of nodes reflects the stable spatial feature. The TSG and SG jointly guide the traffic flow prediction and depict the spatio-temporal feature more accurately to improve the prediction precision. To test the prediction effect of the model, experiments are carried out on two authoritative public data sets. The results show that TSG learned by DySTGCN can accurately reflect the correlation between traffic flows at different nodes and MAE, RMSE and WMAPE of DySTGCN are 13.40%, 10.98%, and 16.72% lower than other spatio-temporal graph convolutional network models such as STGCN, ASTGCN, verifying that dynamic spatial relation plays an important role in short-term traffic flow prediction fully. Besides, DySTGCN can extract periodic features of traffic flow and achieve continuous and uninterrupted prediction of traffic flow.

     

  • loading
  • [1]
    申雷霄, 陆宇航, 郭建华. 卡尔曼滤波短时交通流预测普通国省道适应性研究[J]. 交通信息与安全, 2021, 39(5): 117-127. doi: 10.3963/j.jssn.1674-4861.2021.05.015

    SHEN L X, LU Y H, GUO J H. Adaptability of Kalman filter for short-time traffic flow forecasting on national and provincial highways[J]. Journal of Transport Information and Safety, 2021, 39(5): 117-127(. in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.05.015
    [2]
    何祖杰, 吴新烨, 刘中华. 基于改进灰狼算法优化支持向量机的短期交通流预测[J]. 厦门大学学报(自然科学版), 2022, 61(2): 288-297. https://www.cnki.com.cn/Article/CJFDTOTAL-XDZK202202019.htm

    HE Z J, WU X Y, LIU Z H. Optimized SVM model for short-term traffic flow prediction based on improved gray wolf optimizer[J]. Journal of Xiamen University(Natural Science Edition), 2022, 61(2): 288-297(. in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDZK202202019.htm
    [3]
    童林, 官铮. 改进鲸鱼优化支持向量机的交通流量模糊粒化预测[J]. 计算机应用, 2021, 41(10): 2919-2927. doi: 10.11772/j.issn.1001-9081.2020122048

    TONG L, GUAN Z. Fuzzy granulation prediction of traffic flow based on improved whale optimization support vector machine[J]. Journal of Computer Applications, 2021, 41(10): 2919-2927(. in Chinese) doi: 10.11772/j.issn.1001-9081.2020122048
    [4]
    龚勃文, 林赐云, 李静, 等. 基于核自组织映射—前馈神经网络的交通流短时预测[J]. 吉林大学学报(工学版), 2011, 41(4): 938-943. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201104008.htm

    GONG B W, LIN C Y, LI J, et al. Short-term traffic flow prediction based on KSOM-BP neural network[J]. Journal of Jilin University(Engineering and Technology Edition), 2011, 41(4): 938-943(. in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201104008.htm
    [5]
    冯金巧, 杨兆升, 孙占全, 等. 基于小波分析的交通参数组合预测方法[J]. 吉林大学学报(工学版), 2010, 40(5): 1220-1224. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201005011.htm

    FENG J Q, YANG Z S, SUN Z Q, et al. Combined method for traffic parameter prediction based on wavelet analysis[J]. Journal of Jilin University(Engineering and Technology Edition), 2010, 40(5): 1220-1224(. in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201005011.htm
    [6]
    曹洁, 张敏, 张红等. 基于IFA优化RBF神经网络的短时交通流预测模型[J]. 兰州理工大学学报, 2022, 48(4): 99-104. https://www.cnki.com.cn/Article/CJFDTOTAL-GSGY202204015.htm

    CAO J, ZHANG M, ZHANG H, et al. Short-term traffic flow prediction model based on IFA optimized RBF neural network[J]. Journal of Lanzhou University of Technology, 2022, 48(4): 99-104(. in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSGY202204015.htm
    [7]
    赵庶旭, 崔方. 一种改进的深度置信网络在交通流预测中的应用[J]. 计算机应用研究, 2019, 36(3): 772-775, 785. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201903027.htm

    ZHAO S X, CUI F. Application of improved deep belief network in traffic flow forecasting[J]. Application Research of Computers, 2019, 36(3): 772-775, 785(. in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201903027.htm
    [8]
    陈宇, 王炜, 华雪东, 等. 基于递归框架的高速公路交通流量实时预测方法[J]. 交通信息与安全, 2023, 41(1): 124-131. doi: 10.3963/j.jssn.1674-4861.2023.01.013

    CHEN Y, WANG W, HUA X D, et al. A recursive framework-based approach for real-time traffic flow forecasting for highways[J]. Journal of Transport Information and Safety, 2023, 41(1): 124-131(. in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.01.013
    [9]
    张玺君, 陶冶, 张冠男, 等. 基于ACapsGRU的短时交通流预测研究[J]. 华中科技大学学报(自然科学版), 2022, 50(4): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG202204009.htm

    ZHANG X J, TAO Y, ZHANG G N, et al. Research on short-term traffic flow forecast based on ACapsGRU[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2022, 50(4): 51-56(. in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG202204009.htm
    [10]
    MA X, DAI Z, HE Z, et al. Learning traffic as images: A deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors, 2017, 17(4): 818.
    [11]
    袁华, 陈泽濠. 基于时间卷积神经网络的短时交通流预测算法[J]. 华南理工大学学报(自然科学版), 2020, 48(11): 107-113, 122. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG202011013.htm

    YUAN H, CHEN Z H. Short-term traffic flow prediction based on temporal convolutional networks[J]. Journal of South China University of Technology(Natural Science Edition), 2020, 48(11): 107-113, 122(. in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG202011013.htm
    [12]
    ZHAO L, SONG Y, ZHANG C, et al. T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(9): 3848-3858.
    [13]
    BAI J, ZHU J, SONG Y, et al. A3T-GCN: attention temporal graph convolutional network for traffic forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 10(7): 485.
    [14]
    CHEN L, SHAO W, LYU M, et al. AARGNN: An attentive attributed recurrent graph neural network for traffic flow prediction considering multiple dynamic factors[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 17201-17211.
    [15]
    YU B, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]. The 27th International Joint Conference on Artificial Intelligence, Freiburg, GER: IJCAI, 2018.
    [16]
    GUO S, LIN Y, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]. 33th AAAI Conference on Artificial Intelligence, Palo Alto, USA: AAAI, 2019.
    [17]
    SONG C, LIN Y, GUO S, et al. Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting[C]. 34th AAAI Conference On Artificial Intelligence, Palo Alto, USA: AAAI, 2020.
    [18]
    YE J, ZHAO J, YE K, et al. How to build a graph-based deep learning architecture in traffic domain: A survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(5): 3904-3924.
    [19]
    JIA T, YAN P. Predicting citywide road traffic flow using deep spatiotemporal neural networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(5): 3101-3111.
    [20]
    刘宜成, 李志鹏, 吕淳朴, 等. 基于动态时间调整的时空图卷积路网交通流量预测研究[J]. 交通运输系统工程与信息, 2022, 22(3): 147-157, 178. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202203017.htm

    LIU Y C, LI Z P, LYU C P, et al. Network-wide traffic flow prediction research based on DTW algorithm spatial-temporal graph convolution[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(3): 147-157, 178(. in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202203017.htm
    [21]
    甘萍, 农丽萍, 张文辉, 等. 一种用于交通预测的注意力时空图神经网络[J]. 西安电子科技大学学报, 2023, 50(1): 168-176. https://www.cnki.com.cn/Article/CJFDTOTAL-XDKD202301019.htm

    GAN P, NONG L P, ZHANG W H, et al. Attention spatial-temporal graph neural network for traffic prediction[J]. Journal of Xidian University, 2023, 50(1): 168-176(. in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDKD202301019.htm
    [22]
    杨兴锐, 赵寿为, 张如学, 等. 结合自注意力和残差的BiLSTM_CNN文本分类模型[J]. 计算机工程与应用, 2022, 58(3): 172-180. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202203015.htm

    YANG X R, ZHAO S W, ZHANG R X, et al. BiLSTM_CNN classfication model based on self-attention and residual network[J]. Computer Engineering and Applications, 2022, 58(3): 172-180(. in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202203015.htm
    [23]
    刘文星. 网络攻击频率混沌时间序列预测[D]. 长沙: 国防科学技术大学, 2008.

    LIU W X. Prediction of network attack frequency based on chaotic time series[D]. Changsha: National University of Defense Technology, 2008(. in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (373) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return