Citation: | JI Xiaofeng, KONG Xiaoli, CHEN Fang, HAO Jingjing, QIN Wenwen. A Forecasting Model of Short-term Traffic Flow on Expressways During Holidays Based on ETC Data and A-BiLSTM Neural Network Models[J]. Journal of Transport Information and Safety, 2023, 41(3): 166-174. doi: 10.3963/j.jssn.1674-4861.2023.03.018 |
[1] |
韩直, 徐冲聪, 韩嵩乔. 基于短时交通流预测的广域动态交通路径诱导方法[J]. 交通运输系统工程与信息, 2020, 20(1): 117-123+129. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202001020.htm
HAN Z, XU C C, HAN S Q. Wide-area dynamic traffic path guidance method based on short-term traffic flow prediction[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(1): 117-123+129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202001020.htm
|
[2] |
郭嘉宸, 杨宇燊, 王研, 等. 精细化短时交通流预测模型及迁移部署方案[J]. 计算机应用, 2022, 42(6): 1748-1755. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY202206014.htm
GUO J C, YANG Y S, WANG Y, et al. Refined short-term traffic flow prediction model and migration deployment plan[J]. Journal of Computer Applications, 2022, 42(6): 1748-1755. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY202206014.htm
|
[3] |
白伟华, 张传斌, 张塽旖, 等. 基于异常值识别卡尔曼滤波器的短期交通流预测[J]. 计算机应用研究, 2021, 38(3): 817-821. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202103034.htm
BAI W H, ZHANG C B, ZHANG S Y, et al. Short-term traffic flow prediction based on outlier recognition Kalman filter[J]. Application Research of Computers, 2021, 38(3): 817-821. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202103034.htm
|
[4] |
WILLIAMS B M, HOEL L A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results[J]. Journal of Transportation Engineering, 2003, 129(6): 664-672. doi: 10.1061/(ASCE)0733-947X(2003)129:6(664)
|
[5] |
吴晋武, 张海峰, 冉旭东. 基于数据约减和支持向量机的非参数回归短时交通流预测算法[J]. 公路交通科技, 2020, 37(7): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202007017.htm
WU J W, ZHANG H F, RAN X D. Nonparametric regression short-term traffic flow prediction algorithm based on data reduction and support vector machine[J]. Journal of Highway and Transportation Research and Development, 2020, 37(7): 129-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202007017.htm
|
[6] |
ZHENG W Z, LI D H, SHI Q X. Short-term freeway traffic flow prediction: Bayesian combined neural network approach[J]. Journal of Transportation Engineering, 2006, 132(2): 114-121. doi: 10.1061/(ASCE)0733-947X(2006)132:2(114)
|
[7] |
谢海红, 戴许昊, 齐远. 短时交通流预测的改进K近邻算法[J]. 交通运输工程学报, 2014, 14(3): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201403015.htm
XIE H H, DAI X H, QI Y. Improved K-nearest neighbor algorithm for short-term traffic flow prediction[J]. Journal of Traffic and Transportation Engineering, 2014, 14(3): 87-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201403015.htm
|
[8] |
温惠英, 张东冉. 基于Bi-LSTM模型的高速公路交通量预测[J]. 公路工程, 2019, 44(6): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201906009.htm
WEI H Y, ZHANG D R. Highway traffic forecast based on Bi-LSTM model[J]. Road Construction, 2019, 44(6): 51-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201906009.htm
|
[9] |
罗文慧, 董宝田, 王泽胜. 基于CNN-SVR混合深度学习模型的短时交通流预测[J]. 交通运输系统工程与信息, 2017, 17(5): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201705010.htm
LUO W H, DONG B T, WANG Z S. Short-term traffic flow prediction based on CNN-SVR hybrid deep learning model[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(5): 68-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201705010.htm
|
[10] |
戢晓峰, 戈艺澄. 基于深度学习的节假日高速公路交通流预测方法[J]. 系统仿真学报, 2020, 32(6): 1164-1171. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ202006020.htm
JI X F, GE Y C. Method for forecasting holiday expressway traffic flow based on deep learning[J]. Journal of System Simulation, 2020, 32(6): 1164-1171. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ202006020.htm
|
[11] |
刘群, 杨濯丞, 蔡蕾. 基于ETC门架数据的高速公路短时交通流预测[J]. 公路交通科技, 2022, 39(4): 123-130. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202204014.htm
LIU Q, YANG Z C, CAI L. Prediction of short-term traffic flow on expressways based on ETC gantry data[J]. Journal of Highway and Transportation Research and Development, 2022, 39(4): 123-130. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202204014.htm
|
[12] |
贾兴利, 李双庆, 杨宏志, 等. 基于ATT-LSTM模型的高速公路交通事件持续时长预测[J]. 交通信息与安全, 2022, 40(5): 61-69. doi: 10.3963/j.jssn.1674-4861.2022.05.007
JIA X L, LI S Q, YANG H Z, et al. Prediction of the duration of freeway traffic incidents based on an ATT-LSTM model[J]. Journal of Transport Information and Safety, 2022, 40(5): 61-69. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.05.007
|
[13] |
李桃迎, 王婷, 张羽琪. 考虑多特征的高速公路交通流预测模型[J]. 交通运输系统工程与信息, 2021, 21(3): 101-111. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202103013.htm
LI T Y, WANG T, ZHANG Y Q. Highway traffic flow forecast model considering multiple features[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(3): 101-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202103013.htm
|
[14] |
CAI L, LEI M, ZHANG S, et al. A noise-immune lstm network for short-term traffic flow forecasting[J]. Chaos, 2020, 30(2): 1-11.
|
[15] |
LIU H, ZHANG X Y, YANG Y X, et al. Hourly traffic flow forecasting using a new hybrid modeling method[J]. Journal of Central South University, 2022, 29(4): 1389-1402.
|
[16] |
FANG W, ZHUO W, YAN J, et al. Attention meets long short-term memory: a deep learning network for traffic flow forecasting[J]. Physica A: Statistical Mechanics and its Applications, 2022(587): 126485
|
[17] |
SHI R, XU X Y, LI J M, et al. Prediction and analysis of train arrival delay based on XGBoost and Bayesian optimization[J]. Applied Soft Computing, 2021, 109: 107538.
|
[18] |
KULSHRESTHA A, KRISHNASWAMY V, SHARMA M. Bayesian BILSTM approach for tourism demand forecasting[J]. Annals of tourism research, 2020, 83: 102925.
|
[19] |
陆文琦, 芮一康, 冉斌, 等. 智能网联环境下基于混合深度学习的交通流预测模型[J]. 交通运输系统工程与信息, 2020, 20(3): 47-53. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202003008.htm
LU W Q, RUI Y K, RAN B, et al. Traffic flow prediction model based on hybrid deep learning in intelligent network environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(3): 47-53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202003008.htm
|
[20] |
曾宪堂, 孙昊. 高速公路短时交通流预测方法对比分析[J]. 公路, 2022, 67(2): 366-370. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202202059.htm
ZENG X T, SUN H. Comparative analysis of short-term traffic flow forecasting methods on expressways[J]. Highway, 2022, 67(2): 366-370. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202202059.htm
|
[21] |
张维, 袁绍欣, 陶建军, 等. 基于多元因素的Bi-LSTM高速公路交通流预测[J]. 计算机系统应用, 2021, 30(6): 184-190. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYY202106026.htm
ZHANG W, YUAN S X, TAO J J, et al. Bi-LSTM highway traffic flow prediction based on multiple factors[J]. Computer Systems & Applications, 2021, 30(6): 184-190. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTYY202106026.htm
|
[22] |
陈治亚, 王小军. 基于多维度LSTM模型的短时交通流预测[J]. 铁道科学与工程学报, 2020, 17(11): 2946-2952. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202011028.htm
CHEN Z Y, WANG X J. Short-term traffic flow prediction based on multidimensional LSTM model[J]. Journal of Railway Science and Engineering, 2020, 17(11): 2946-2952. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202011028.htm
|
[23] |
LU H, GE Z, SONG Y, et al. A temporal-aware LSTM enhanced by loss-switch mechanism for traffic flow forecasting[J]. Neurocomputing, 2021(427): 169-178.
|
[24] |
WANG K, MA C, QIAO Y, et al. A hybrid deep learning model with 1DCNN-LSTM-Attention networks for short-term traffic flow prediction[J]. Physica A: Statistical Mechanics and its Applications, 2021(583): 126293.
|
[25] |
李明明, 雷菊阳, 赵从健. 基于LSTM-BP组合模型的短时交通流预测[J]. 计算机系统应用, 2019, 28(10): 152-156. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYY201910021.htm
LI M M, LEI J Y, ZHAO C J. Short-term traffic flow forecasting based on LSTM-BP hybrid model[J]. Computer Systems Application, 2019, 28(10): 152-156. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTYY201910021.htm
|