Citation: | ZHANG Yang, ZHANG Shuaifeng, LIU Weiming. A Small-scale Pedestrian Detection Method Based on Fused Residual Networks and Feature Pyramids[J]. Journal of Transport Information and Safety, 2023, 41(3): 111-118. doi: 10.3963/j.jssn.1674-4861.2023.03.012 |
[1] |
HOU L, LU K, XUE J. Refined one-stage oriented object detection method for remote sensing images[J]. IEEE Transactions on Image Processing, 2022(31): 1545-1558.
|
[2] |
GE Z, JIE Z, HUANG X, et al. Delving deep into the imbalance of positive proposals in two-stage object detection[J]. Neurocomputing, 2021, 425: 107-116. doi: 10.1016/j.neucom.2020.10.098
|
[3] |
李翔, 何淼, 罗海波. 1种面向遮挡行人检测的改进YOLOv3算法[J]. 光学学报, 2022, 42(14): 160-169. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202214021.htm
LI X, HE M, LUO H B. An improved yolov3 algorithm for occluded pedestrian detection[J]. Acta Optica Sinica, 2022, 42(14): 160-169. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202214021.htm
|
[4] |
王鹏, 神和龙, 尹勇, 等. 基于深度学习的船舶驾驶员疲劳检测算法[J]. 交通信息与安全, 2022, 40(1): 63-71. doi: 10.3963/j.jssn.1674-4861.2022.01.008
WANG P, SHEN H L, YIN Y, et al. A detection algorithm for the fatigue of ship officers based on deep learning technique[J]. Journal of Transport Information and Safety, 2022, 40(1): 63-71. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.01.008
|
[5] |
杨鹏强, 张艳伟, 胡钊政. 基于改进RepVGG网络的车道线检测算法[J]. 交通信息与安全, 2022, 40(2): 73-81. doi: 10.3963/j.jssn.1674-4861.2022.02.009
YANG P Q, ZHANG Y W, HU Z Z. A lane detection algorithm based on improved repvgg network[J]. Journal of Transport Information and Safety, 2022, 40(2): 73-81. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.02.009
|
[6] |
储珺, 束雯, 周子博, 等. 结合语义和多层特征融合的行人检测[J]. 自动化学报, 2022, 48(1): 282-291. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO202201020.htm
CHU J, SHU W, ZHOU Z B, et al. Combining semantics with multi-level feature fusion for pedestrian detection[J]. Acta Automatica Sinica, 2022, 48(1): 282-291. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO202201020.htm
|
[7] |
罗艳, 张重阳, 田永鸿, 等. 深度学习行人检测方法综述[J]. 中国图象图形学报, 2022, 27(7): 2094-2111. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB202207003.htm
LUO Y, ZHANG C Y, TIAN Y H, et al. An overview of deep learning based pedestrian detection algorithms[J]. Journal of Image and Graphics, 2022, 27(7): 2094-2111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB202207003.htm
|
[8] |
RABBI J, RAY N, SCHUBERT M, et al. Small-object detection in remote sensing images with end-to-end edge-enhanced gan and object detector network[J]. Remote Sensing, 2020, 12 (9): 1432. doi: 10.3390/rs12091432
|
[9] |
ZHAI S, SHANG D, WANG S, et al. Df-ssd: An improved ssd object detection algorithm based on densenet and feature fusion[J]. IEEE Access, 2020(8): 24344-24357.
|
[10] |
ROY A M, BOSE R, BHADURI J. A fast accurate fine-grain object detection model based on YOLOv4 deep neural network[J]. Neural Computing and Applications, 2022, 34(5): 3895-3921. doi: 10.1007/s00521-021-06651-x
|
[11] |
YIN Q, YANG W, RAN M, et al. Fd-ssd: An improved ssd object detection algorithm based on feature fusion and dilated convolution[J]. Signal Processing: Image Communication, 2021(98): 116402.
|
[12] |
王程, 刘元盛, 刘圣杰. 基于改进YOLOv4的小目标行人检测算法[J]. 计算机工程, 2023, 49(2): 296-302, 313. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC202302036.htm
WANG C, LIU Y S, LIU S J. Small target pedestrian detection algorithm based on improved yolov4[J]. Computer Engineering, 2023, 49(2): 296-302, 313. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC202302036.htm
|
[13] |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. Computer Vision and Pattern Recognition, Hawaii, USA: IEEE, 2017.
|
[14] |
LI J, LIANG X, SHEN S M, et al. Scale-aware fast r-cnn for pedestrian detection[J]. IEEE Transactions on Multimedia, 2017, 20(4): 985-996.
|
[15] |
REN S, HE K, GIRSHICK R, et al. Faster r-cnn: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149.
|
[16] |
WU M, YUE H, WANG J, et al. Object detection based on rgc mask r-cnn[J]. IET Image Processing, 2020, 14(8): 1502-1508.
|
[17] |
ZHANG L, LIN L, LIANG X, et al. Is faster r-cnn doing well for pedestrian detection?[C]. European Conference on Computer Vision, Amsterdam, Netherlands: Springer, 2016.
|
[18] |
LIU T, STATHAKI T. Faster r-cnn for robust pedestrian detection using semantic segmentation network[J]. Frontiers in Neurorobotics, 2018(12): 1-10.
|
[19] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]. Computer Vision and Pattern Recognition, Las Vegas, USA: IEEE, 2016.
|
[20] |
SHAO X, WANG Q, YANG W, et al. Multi-scale feature pyramid network: A heavily occluded pedestrian detection network based on resnet[J]. Sensors, 2021, 21(5): 1820.
|
[21] |
HUANG S, LU Z, CHENG R, et al. Fapn: feature-aligned pyramid network for dense image prediction[C]. International Conference on Computer Vision, Montreal, Canada: IEEE, 2021.
|
[22] |
SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
|
[23] |
TANG L, TANG W, QU X, et al. A scale-aware pyramid network for multi-scale object detection in sar images[J]. Remote Sensing, 2022, 14(4): 973.
|
[24] |
CAI Z, VASCONCELOS N. Cascade r-cnn: high quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43 (5): 1483-1498.
|
[25] |
ZHANG S, WEN L, BIAN X, et al. Single-shot refinement neural network for object detection[C]. Computer Vision and Pattern Recognition, Salt Lake City, USA: IEEE, 2018.
|
[26] |
LI B, LIU Y, WANG X. Gradient harmonized single-stage detector[C]. AAAI Conference on Artificial Intelligence, Hawaii, USA: AAAI, 2019.
|