Citation: | LI Bin, MA Jing, XU Xuecai, MA Changxi. An Automatic Freeway Incident Detection Algorithm using Vehicle Trajectories[J]. Journal of Transport Information and Safety, 2023, 41(3): 23-29. doi: 10.3963/j.jssn.1674-4861.2023.03.003 |
[1] |
李浩澜. 基于视频图形的高速公路异常事件实时检测系统[D]. 重庆: 重庆理工大学, 2020.
LI H L. A real-time detection system for abnormal events of highway based on image[D]. Chongqing: Chongqing University of Technology, 2020. (in Chinese)
|
[2] |
常丹丹. 基于深度学习的公路货物运输量预测方法研究[D]. 西安: 长安大学, 2018.
CHANG D D. Research on volume of road cargo transportation forecasting method based on deep learning[D]. Xi'an: Chang'an University, 2018. (in Chinese)
|
[3] |
EVANS J, WATERSON B, HAMILTON A. Evolution and future of urban road incident detection algorithms[J]. Journal of Transportation Engineering Part A: Systems, 2020, 146(6): 03120001. doi: 10.1061/JTEPBS.0000362
|
[4] |
MASTERS P H, LAM J, WONG K. Incident detection algorithms for COMPASS-An advanced traffic management system[C]. Vehicle Navigation and Information Systems Conference, New York, U. S. A. : IEEE, 1991.
|
[5] |
LEVEN M, Krause G M. Incident detection: A Bayesian approach[J]. Transportation Research Record, 1978(682): 52-58.
|
[6] |
LYALL B B. Performance evaluation of the McMaster incident detection algorithm[D]. Ontario: McMaster University, 1991.
|
[7] |
AHMED S A, COOK A R. Application of time-series analysis techniques to freeway incident detection[J]. Transportation Research Record, 1982(841), 19-21.
|
[8] |
CREMER M, SCHUTT H. A comprehensive concept for simultaneous state observation, parameter estimation and incident detection[C]. The 11th International Symposium on Transportation and Traffic Theory, Amsterdam, Netherlands: Elsevier, 1990.
|
[9] |
TENG H, QI Y. Application of wavelet technique to freeway incident detection[J]. Transportation Research Part C: Emerging Technologies, 2003, 11(3/4): 289-308.
|
[10] |
朱金凤. 基于YOLO-v3的高速公路交通事件检测系统研究[D]. 徐州: 中国矿业大学, 2020.
ZHU J F. Research on expressway traffic incident detection system based on YOLO-v3[D]. Xuzhou: China University of Mining and Technology, 2020. (in Chinese)
|
[11] |
MICHALOPOULOS P G. Vehicle detection video through image processing: the Autoscope system[J]. Transactions on Vehicular Technology, 1991, 40(1): 21-29. doi: 10.1109/25.69968
|
[12] |
CHARKRABORTY P. Freeway traffic incident detection using large scale traffic data and cameras[D]. Iowa: Iowa State University, 2019.
|
[13] |
冯汝怡, 李志斌, 吴启范, 范昌彦. 航拍视频车辆检测目标关联与时空轨迹匹配[J]. 交通信息与安全, 2021, 9(2): 61-69. doi: 10.3963/j.jssn.1674-4861.2021.02.008
FENG R Y, LI Z B, WU Q F, et al. Association of vehicle object detection and the time-space trajectory matching from aerial videos[J]. Journal of Transport Information and Safety, 2021, 9(2): 61-69. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.02.008
|
[14] |
LIN Y, LI L, JING H, et al. Automated traffic incident detection with a smaller dataset based on generative adversarial networks[J]. Accident Analysis & Prevention, 2020(4): 105628.
|
[15] |
乔鹏. 基于深度学习和边缘任务卸载的交通流量检测研究[D]. 西安: 西安电子科技大, 2019.
QIAO P. Research on traffic flow detection based on deep learning and edge task offloading[D]. Xi'an: Xi Dian University, 2019. (in Chinese)
|
[16] |
高新闻, 沈卓, 许国耀, 等. 基于多目标跟踪的交通异常事件检测[J]. 计算机应用研究, 2021, 38(6): 1879-1883 https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202106054.htm
GAO X W, SHEN Z, XU G Y, et al. Traffic anomaly detection based on multi-target tracking[J]. Application Research of Computers, 2021, 38(6): 1879-1883. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202106054.htm
|
[17] |
孙士杰. 复杂交通场景下多目标检测跟踪问题研究[D]. 西安: 长安大学, 2019.
SUN S J. Research on multiple object detection and tracking problems in complex traffic scenes[D]. Xi'an: Chang'an University, 2019. (in Chinese)
|
[18] |
高铭. 基于深度学习的复杂交通环境下目标跟踪与轨迹预测研究[D]. 长春: 吉林大学, 2020.
GAO M. Research on object tracing and trajectory prediction in complex environment based on deep learning[D]. Changchun: Jilin University, 2020. (in Chinese)
|
[19] |
杨明辉. 基于循环神经网络的运动目标轨迹预测[D]. 武汉: 武汉大学, 2019.
YANG M H. Trajectory prediction of moving target based on recurrent neural network[D]. Wuhan: Wuhan University, 2019. (in Chinese)
|